On a family of integrals that extend the Askey–Wilson integral

We study a family of integrals parameterised by N=2,3,… generalising the Askey–Wilson integral N=2 which has arisen in the theory of q-analogs of monodromy preserving deformations of linear differential systems and in theory of the Baxter Q operator for the XXZ open quantum spin chain. These integra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 421; číslo 2; s. 1101 - 1130
Hlavní autoři: Ito, Masahiko, Witte, N.S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.01.2015
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study a family of integrals parameterised by N=2,3,… generalising the Askey–Wilson integral N=2 which has arisen in the theory of q-analogs of monodromy preserving deformations of linear differential systems and in theory of the Baxter Q operator for the XXZ open quantum spin chain. These integrals are particular examples of moments defined by weights generalising the Askey–Wilson weight and we show the integrals are characterised by various (N−1)-th order linear q-difference equations which we construct. In addition we demonstrate that these integrals can be evaluated as a finite sum of (N−1)BC1-type Jackson integrals or φ2N+12N+2 basic hypergeometric functions.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2014.07.056