A Distributed Bi-Behaviors Crow Search Algorithm for Dynamic Multi-Objective Optimization and Many-Objective Optimization Problems
Dynamic Multi-Objective Optimization Problems (DMOPs) and Many-Objective Optimization Problems (MaOPs) are two classes of the optimization field that have potential applications in engineering. Modified Multi-Objective Evolutionary Algorithms hybrid approaches seem to be suitable to effectively deal...
Saved in:
| Published in: | Applied sciences Vol. 12; no. 19; p. 9627 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Multidisciplinary digital publishing institute (MDPI)
01.10.2022
MDPI AG |
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Dynamic Multi-Objective Optimization Problems (DMOPs) and Many-Objective Optimization Problems (MaOPs) are two classes of the optimization field that have potential applications in engineering. Modified Multi-Objective Evolutionary Algorithms hybrid approaches seem to be suitable to effectively deal with such problems. However, the standard Crow Search Algorithm has not been considered for either DMOPs or MaOPs to date. This paper proposes a Distributed Bi-behaviors Crow Search Algorithm (DB-CSA) with two different mechanisms, one corresponding to the search behavior and another to the exploitative behavior with a dynamic switch mechanism. The bi-behaviors CSA chasing profile is defined based on a large Gaussian-like Beta-1 function, which ensures diversity enhancement, while the narrow Gaussian Beta-2 function is used to improve the solution tuning and convergence behavior. Two variants of the proposed DB-CSA approach are developed: the first variant is used to solve a set of MaOPs with 2, 3, 5, 7, 8, 10,15 objectives, and the second aims to solve several types of DMOPs with different time-varying Pareto optimal sets and a Pareto optimal front. The second variant of DB-CSA algorithm (DB-CSA-II) is proposed to solve DMOPs, including a dynamic optimization process to effectively detect and react to the dynamic change. The Inverted General Distance, the Mean Inverted General Distance and the Hypervolume Difference are the main measurement metrics used to compare the DB-CSA approach to the state-of-the-art MOEAs. The Taguchi method has been used to manage the meta-parameters of the DB-CSA algorithm. All quantitative results are analyzed using the non-parametric Wilcoxon signed rank test with 0.05 significance level, which validated the efficiency of the proposed method for solving 44 test beds (21 DMOPs and 23 MaOPS). |
|---|---|
| AbstractList | Dynamic Multi-Objective Optimization Problems (DMOPs) and Many-Objective Optimization Problems (MaOPs) are two classes of the optimization field that have potential applications in engineering. Modified Multi-Objective Evolutionary Algorithms hybrid approaches seem to be suitable to effectively deal with such problems. However, the standard Crow Search Algorithm has not been considered for either DMOPs or MaOPs to date. This paper proposes a Distributed Bi-behaviors Crow Search Algorithm (DB-CSA) with two different mechanisms, one corresponding to the search behavior and another to the exploitative behavior with a dynamic switch mechanism. The bi-behaviors CSA chasing profile is defined based on a large Gaussian-like Beta-1 function, which ensures diversity enhancement, while the narrow Gaussian Beta-2 function is used to improve the solution tuning and convergence behavior. Two variants of the proposed DB-CSA approach are developed: the first variant is used to solve a set of MaOPs with 2, 3, 5, 7, 8, 10,15 objectives, and the second aims to solve several types of DMOPs with different time-varying Pareto optimal sets and a Pareto optimal front. The second variant of DB-CSA algorithm (DB-CSA-II) is proposed to solve DMOPs, including a dynamic optimization process to effectively detect and react to the dynamic change. The Inverted General Distance, the Mean Inverted General Distance and the Hypervolume Difference are the main measurement metrics used to compare the DB-CSA approach to the state-of-the-art MOEAs. The Taguchi method has been used to manage the meta-parameters of the DB-CSA algorithm. All quantitative results are analyzed using the non-parametric Wilcoxon signed rank test with 0.05 significance level, which validated the efficiency of the proposed method for solving 44 test beds (21 DMOPs and 23 MaOPS). |
| Author | Neji, Bilel Aboud, Ahlem Al Barakeh, Zaher Al Rokbani, Nizar Mirjalili, Seyedali Alimi, Adel M. |
| Author_xml | – sequence: 1 givenname: Ahlem orcidid: 0000-0003-3915-7104 surname: Aboud fullname: Aboud, Ahlem – sequence: 2 givenname: Nizar orcidid: 0000-0003-4848-5855 surname: Rokbani fullname: Rokbani, Nizar – sequence: 3 givenname: Bilel orcidid: 0000-0003-1147-4896 surname: Neji fullname: Neji, Bilel – sequence: 4 givenname: Zaher Al orcidid: 0000-0002-1739-5593 surname: Al Barakeh fullname: Al Barakeh, Zaher Al – sequence: 5 givenname: Seyedali orcidid: 0000-0002-1443-9458 surname: Mirjalili fullname: Mirjalili, Seyedali – sequence: 6 givenname: Adel M. orcidid: 0000-0002-0642-3384 surname: Alimi fullname: Alimi, Adel M. |
| BackLink | https://u-picardie.hal.science/hal-05387223$$DView record in HAL |
| BookMark | eNp1UctOwzAQtFCRgNITP-ArQgE7jhP7WMpTalUk4BxtHLt1lcSV4xaVI19OoAgVBHvZ1ezMrLRzhHqNazRCJ5ScMybJBSyXNKZSpnG2hw5jkqURS2jW25kP0KBtF6QrSZmg5BC9DfGVbYO3xSroEl_a6FLPYW2db_HIuxf8qMGrOR5WM-dtmNfYOI-vNg3UVuHJqgo2mhYLrYJdazxdBlvbVwjWNRiaEk-g2fy3f_CuqHTdHqN9A1WrB1-9j55vrp9Gd9F4ens_Go4jxTISIpkYBSIBkEbEmRTAVZrSBCgz0hScx6akWcEo54QJDSxRglFjCMQFLRXPWB_db31LB4t86W0NfpM7sPkn4PwsBx-sqnSuRWoMN7IkUiapKSRXSnfnJWel4UR0XqdbrzlUP6zuhuP8AyOciSyO2Zp23LMtV3nXtl6bbwEl-Udy-U5yHZv-YisbPh8WPNjqT807vCCfQA |
| CitedBy_id | crossref_primary_10_1111_exsy_13458 crossref_primary_10_3390_app13085078 |
| Cites_doi | 10.1016/j.compstruc.2016.03.001 10.1109/ACCESS.2019.2897325 10.1109/TEVC.2016.2519378 10.1109/CEC.2014.6900487 10.1007/s11036-019-01271-1 10.1109/TCYB.2018.2884083 10.1109/CSIEC.2017.7940171 10.1016/j.asoc.2019.105673 10.1007/s00500-019-04640-w 10.1109/CEC.2016.7744255 10.1109/TSMC.2019.2930737 10.1109/TEVC.2006.876362 10.1109/TCYB.2016.2548239 10.1109/TEVC.2008.920671 10.1109/TEVC.2017.2771451 10.1109/SIS.2014.7011803 10.3390/en11030571 10.1109/TEVC.2019.2925722 10.1109/TCYB.2015.2490738 10.1162/EVCO_a_00075 10.1109/TEVC.2016.2587808 10.1109/ACCESS.2020.3031002 10.1109/TEVC.2018.2791283 10.1109/TCYB.2020.3041212 10.1109/TEVC.2010.2058117 10.1109/TEVC.2014.2350987 10.1109/ICIT.2019.8755092 10.1016/j.advengsoft.2011.05.014 10.1109/TEVC.2004.831456 10.1109/TEVC.2014.2373386 10.1109/TEVC.2012.2204264 10.1109/CIS.2019.00051 10.1016/j.asoc.2022.109622 10.1109/TEVC.2018.2866854 10.1109/TEVC.2015.2420112 10.1016/j.neucom.2011.03.053 10.1007/s10462-020-09911-9 10.1109/TEVC.2012.2227145 10.1109/ACCESS.2018.2832181 10.1007/s00500-020-05406-5 10.1109/TEVC.2016.2592479 10.1016/j.asoc.2017.08.004 10.1109/TCYB.2013.2245892 10.1016/j.ejor.2006.08.008 10.1109/TEVC.2013.2281535 10.1109/TEVC.2013.2262178 10.1109/SMC.2016.7844846 10.1007/s40095-019-00319-y 10.1162/EVCO_a_00009 10.1109/TCYB.2020.2988896 10.1109/CEC.2007.4424985 10.3390/app9071353 10.1016/j.procs.2020.03.420 10.1109/ACCESS.2020.2999417 10.1109/TSMCB.2008.926329 10.1109/TEVC.2007.892759 10.1109/TEVC.2014.2378512 10.1007/978-3-540-70928-2_60 10.3390/en11123321 10.2991/ijcis.2018.125905658 10.1109/ICCIAS.2006.294139 10.1007/s40313-020-00564-1 10.1109/TEVC.2007.910138 10.1109/NCCC49330.2021.9428811 10.1109/TEVC.2013.2281533 10.1016/j.asoc.2018.06.040 10.1177/003754970107600201 10.1109/TCYB.2020.2989465 10.1109/TEVC.2016.2574621 10.1007/s00500-015-1637-1 10.1016/B978-0-12-372529-5.00005-6 10.1109/4235.996017 10.1007/s00521-018-3688-6 10.1016/j.asoc.2019.01.026 |
| ContentType | Journal Article |
| Copyright | licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 1XC DOA |
| DOI | 10.3390/app12199627 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Computer Science |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_e86ff5f9d09946fb95ccefca953df508 oai:HAL:hal-05387223v1 10_3390_app12199627 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS 1XC |
| ID | FETCH-LOGICAL-c370t-94fca84aa9f82798a5c6614a13f9fb552fd17b3155038ea34c831ff0a2b1dc573 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866565400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:06:52 EDT 2025 Sun Nov 30 06:10:28 EST 2025 Sat Nov 29 07:07:57 EST 2025 Tue Nov 18 22:17:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-94fca84aa9f82798a5c6614a13f9fb552fd17b3155038ea34c831ff0a2b1dc573 |
| ORCID | 0000-0003-1147-4896 0000-0003-3915-7104 0000-0002-1739-5593 0000-0002-1443-9458 0000-0003-4848-5855 0000-0002-0642-3384 |
| OpenAccessLink | https://doaj.org/article/e86ff5f9d09946fb95ccefca953df508 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e86ff5f9d09946fb95ccefca953df508 hal_primary_oai_HAL_hal_05387223v1 crossref_primary_10_3390_app12199627 crossref_citationtrail_10_3390_app12199627 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied sciences |
| PublicationYear | 2022 |
| Publisher | Multidisciplinary digital publishing institute (MDPI) MDPI AG |
| Publisher_xml | – name: Multidisciplinary digital publishing institute (MDPI) – name: MDPI AG |
| References | Farina (ref_6) 2004; 8 Deb (ref_80) 2002; 6 Lu (ref_26) 2020; 8 Meraihi (ref_58) 2021; 54 Liu (ref_54) 2020; 51 Deb (ref_24) 2014; 18 Sun (ref_31) 2019; 23 Tian (ref_53) 2019; 23 Jiang (ref_15) 2020; 51 Zhang (ref_40) 2015; 19 Zhang (ref_13) 2007; 11 Li (ref_39) 2014; 18 ref_51 Liu (ref_23) 2014; 18 Carvalho (ref_44) 2012; 75 Sun (ref_46) 2016; 20 ref_59 Jiang (ref_17) 2018; 22 Aboud (ref_2) 2017; Volume 10637 Goh (ref_12) 2009; 13 Purshouse (ref_19) 2007; 11 ref_61 Arora (ref_74) 2019; 7 Laabadi (ref_62) 2020; 167 Cheng (ref_22) 2016; 20 Leung (ref_50) 2020; 8 Cao (ref_16) 2020; 24 ref_69 ref_68 ref_67 Mohammadi (ref_65) 2018; 71 Muruganantham (ref_18) 2016; 46 ref_21 ref_20 ref_63 Zhou (ref_14) 2014; 44 Cuevas (ref_72) 2020; Volume 854 Gaddala (ref_76) 2020; 31 Yuan (ref_36) 2016; 20 Bhullar (ref_71) 2020; 24 Bader (ref_27) 2011; 19 Cuevas (ref_66) 2019; Volume 822 Adra (ref_38) 2011; 15 Yang (ref_35) 2013; 17 ref_79 ref_34 ref_78 ref_75 ref_30 Moghaddam (ref_73) 2019; 10 Rokbani (ref_84) 2021; 25 Askarzadeh (ref_9) 2016; 169 Xiang (ref_49) 2020; 50 Wang (ref_41) 2013; 17 Gupta (ref_64) 2020; 32 Chen (ref_57) 2019; 51 Li (ref_55) 2018; 6 Zitzler (ref_29) 2004; Volume 3242 Xiang (ref_52) 2017; 21 Javidi (ref_70) 2019; 77 Geem (ref_10) 2001; 76 Hadka (ref_33) 2013; 21 Zou (ref_32) 2008; 38 ref_83 ref_81 Pierro (ref_37) 2007; 11 Beume (ref_28) 2007; 181 Li (ref_25) 2015; 19 Jiang (ref_11) 2017; 21 ref_45 ref_42 Jiang (ref_56) 2017; 21 ref_85 Ou (ref_7) 2019; 85 ref_1 Alimi (ref_77) 2003; 7 Durillo (ref_82) 2011; 42 ref_3 Zou (ref_8) 2017; 61 Wang (ref_43) 2015; 19 ref_48 John (ref_60) 2019; 24 Hu (ref_47) 2017; 47 ref_5 ref_4 |
| References_xml | – volume: 169 start-page: 1 year: 2016 ident: ref_9 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.03.001 – ident: ref_5 – volume: Volume 3242 start-page: 832 year: 2004 ident: ref_29 article-title: Indicator-based selection in multiobjective search publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics – volume: 7 start-page: 26343 year: 2019 ident: ref_74 article-title: A New Hybrid Algorithm Based on Grey Wolf Optimization and Crow Search Algorithm for Unconstrained Function Optimization and Feature Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897325 – volume: 20 start-page: 773 year: 2016 ident: ref_22 article-title: A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – ident: ref_81 doi: 10.1109/CEC.2014.6900487 – volume: 24 start-page: 1509 year: 2019 ident: ref_60 article-title: MOTCO: Multi-objective Taylor Crow Optimization Algorithm for Cluster Head Selection in Energy Aware Wireless Sensor Network publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-019-01271-1 – volume: 50 start-page: 2209 year: 2020 ident: ref_49 article-title: A Many-Objective Particle Swarm Optimizer with Leaders Selected from Historical Solutions by Using Scalar Projections publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2884083 – ident: ref_59 doi: 10.1109/CSIEC.2017.7940171 – volume: 85 start-page: 105673 year: 2019 ident: ref_7 article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105673 – volume: 24 start-page: 11957 year: 2020 ident: ref_71 article-title: Enhanced crow search algorithm for AVR optimization publication-title: Soft Comput. doi: 10.1007/s00500-019-04640-w – ident: ref_48 doi: 10.1109/CEC.2016.7744255 – volume: 51 start-page: 3552 year: 2019 ident: ref_57 article-title: Solving Many-Objective Optimization Problems via Multistage Evolutionary Search publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2019.2930737 – ident: ref_61 – volume: 11 start-page: 17 year: 2007 ident: ref_37 article-title: An investigation on preference order ranking scheme for multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.876362 – volume: 47 start-page: 1446 year: 2017 ident: ref_47 article-title: Many-Objective Particle Swarm Optimization Using Two-Stage Strategy and Parallel Cell Coordinate System publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2548239 – volume: 13 start-page: 103 year: 2009 ident: ref_12 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.920671 – volume: 22 start-page: 501 year: 2018 ident: ref_17 article-title: Transfer Learning-Based Dynamic Multiobjective Optimization Algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2771451 – ident: ref_45 doi: 10.1109/SIS.2014.7011803 – ident: ref_68 doi: 10.3390/en11030571 – volume: 24 start-page: 305 year: 2020 ident: ref_16 article-title: Evolutionary Dynamic Multiobjective Optimization Assisted by a Support Vector Regression Predictor publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2925722 – volume: Volume 822 start-page: 137 year: 2019 ident: ref_66 article-title: A modified crow search algorithm with applications to power system problems publication-title: Studies in Computational Intelligence – volume: 46 start-page: 2862 year: 2016 ident: ref_18 article-title: Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2490738 – volume: 21 start-page: 231 year: 2013 ident: ref_33 article-title: Borg: An auto-adaptive many-objective evolutionary computing framework publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00075 – volume: 21 start-page: 131 year: 2017 ident: ref_52 article-title: A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2587808 – volume: 8 start-page: 189527 year: 2020 ident: ref_50 article-title: A hybrid leader selection strategy for many-objective particle swarm optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031002 – volume: 23 start-page: 173 year: 2019 ident: ref_31 article-title: IGD Indicator-Based Evolutionary Algorithm for Many-Objective Optimization Problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2791283 – ident: ref_83 – ident: ref_51 doi: 10.1109/TCYB.2020.3041212 – volume: 15 start-page: 183 year: 2011 ident: ref_38 article-title: Diversity management in evolutionary many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2058117 – volume: 19 start-page: 524 year: 2015 ident: ref_43 article-title: Two Arch2: An Improved Two-Archive Algorithm for Many-Objective Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2350987 – volume: Volume 854 start-page: 27 year: 2020 ident: ref_72 article-title: An Enhanced Crow Search Algorithm Applied to Energy Approaches publication-title: Studies in Computational Intelligence – ident: ref_85 doi: 10.1109/ICIT.2019.8755092 – volume: 42 start-page: 760 year: 2011 ident: ref_82 article-title: JMetal: A Java framework for multi-objective optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2011.05.014 – volume: 8 start-page: 425 year: 2004 ident: ref_6 article-title: Dynamic multiobjective optimization problems: Test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.831456 – ident: ref_20 – volume: 19 start-page: 694 year: 2015 ident: ref_25 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2373386 – volume: 17 start-page: 474 year: 2013 ident: ref_41 article-title: Preference-inspired coevolutionary algorithms for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2204264 – ident: ref_30 doi: 10.1109/CIS.2019.00051 – ident: ref_4 doi: 10.1016/j.asoc.2022.109622 – volume: 23 start-page: 331 year: 2019 ident: ref_53 article-title: A Strengthened Dominance Relation Considering Convergence and Diversity for Evolutionary Many-Objective Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2866854 – ident: ref_34 – volume: 20 start-page: 16 year: 2016 ident: ref_36 article-title: A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2420112 – volume: 75 start-page: 43 year: 2012 ident: ref_44 article-title: Measuring the convergence and diversity of CDAS Multi-Objective Particle Swarm Optimization Algorithms: A study of many-objective problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.03.053 – volume: 54 start-page: 2669 year: 2021 ident: ref_58 article-title: A comprehensive survey of Crow Search Algorithm and its applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09911-9 – volume: 17 start-page: 721 year: 2013 ident: ref_35 article-title: A grid-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2227145 – volume: 6 start-page: 26194 year: 2018 ident: ref_55 article-title: Evolutionary Many-Objective Optimization: A Comparative Study of the State-of-The-Art publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2832181 – volume: 25 start-page: 3775 year: 2021 ident: ref_84 article-title: Bi-heuristic ant colony optimization-based approaches for traveling salesman problem publication-title: Soft Comput. doi: 10.1007/s00500-020-05406-5 – volume: 21 start-page: 329 year: 2017 ident: ref_56 article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2592479 – volume: 61 start-page: 806 year: 2017 ident: ref_8 article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.08.004 – volume: 44 start-page: 40 year: 2014 ident: ref_14 article-title: A Population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2245892 – volume: 181 start-page: 1653 year: 2007 ident: ref_28 article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.08.008 – volume: 18 start-page: 577 year: 2014 ident: ref_24 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 18 start-page: 348 year: 2014 ident: ref_39 article-title: Shift-based density estimation for pareto-based algorithms in many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2262178 – ident: ref_63 – ident: ref_3 doi: 10.1109/SMC.2016.7844846 – volume: 10 start-page: 429 year: 2019 ident: ref_73 article-title: Designing of stand-alone hybrid PV/wind/battery system using improved crow search algorithm considering reliability index publication-title: Int. J. Energy Environ. Eng. doi: 10.1007/s40095-019-00319-y – volume: Volume 10637 start-page: 258 year: 2017 ident: ref_2 article-title: Dynamic Multi Objective Particle Swarm Optimization Based on a New Environment Change Detection Strategy publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 19 start-page: 45 year: 2011 ident: ref_27 article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00009 – volume: 51 start-page: 5585 year: 2020 ident: ref_54 article-title: Solving Many-Objective Optimization Problems by a Pareto-Based Evolutionary Algorithm with Preprocessing and a Penalty Mechanism publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2988896 – ident: ref_21 doi: 10.1109/CEC.2007.4424985 – ident: ref_67 doi: 10.3390/app9071353 – volume: 167 start-page: 809 year: 2020 ident: ref_62 article-title: A Binary Crow Search Algorithm for Solving Two-dimensional Bin Packing Problem with Fixed Orientation publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.420 – volume: 8 start-page: 103550 year: 2020 ident: ref_26 article-title: A Decomposition Method Based on Random Objective Division for MOEA/D in Many-Objective Optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2999417 – volume: 38 start-page: 1402 year: 2008 ident: ref_32 article-title: A new evolutionary algorithm for solving many-objective optimization problems publication-title: IEEE Trans. Syst. Man, Cybern. Part B Cybern. doi: 10.1109/TSMCB.2008.926329 – volume: 11 start-page: 712 year: 2007 ident: ref_13 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 19 start-page: 761 year: 2015 ident: ref_40 article-title: A knee point-driven evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2378512 – ident: ref_1 doi: 10.1007/978-3-540-70928-2_60 – ident: ref_69 doi: 10.3390/en11123321 – ident: ref_75 doi: 10.2991/ijcis.2018.125905658 – ident: ref_42 doi: 10.1109/ICCIAS.2006.294139 – volume: 31 start-page: 377 year: 2020 ident: ref_76 article-title: Merging Lion with Crow Search Algorithm for Optimal Location and Sizing of UPQC in Distribution Network publication-title: J. Control. Autom. Electr. Syst. doi: 10.1007/s40313-020-00564-1 – volume: 11 start-page: 770 year: 2007 ident: ref_19 article-title: On the evolutionary optimization of many conflicting objectives publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.910138 – ident: ref_78 doi: 10.1109/NCCC49330.2021.9428811 – volume: 18 start-page: 450 year: 2014 ident: ref_23 article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281533 – volume: 71 start-page: 51 year: 2018 ident: ref_65 article-title: A modified crow search algorithm (MCSA) for solving economic load dispatch problem publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2018.06.040 – volume: 7 start-page: 23 year: 2003 ident: ref_77 article-title: Beta Neuro-Fuzzy Systems publication-title: Task Q. – volume: 76 start-page: 60 year: 2001 ident: ref_10 article-title: A New Heuristic Optimization Algorithm: Harmony Search publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 51 start-page: 3417 year: 2020 ident: ref_15 article-title: A Fast Dynamic Evolutionary Multiobjective Algorithm via Manifold Transfer Learning publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2989465 – volume: 21 start-page: 65 year: 2017 ident: ref_11 article-title: A Steady-State and Generational Evolutionary Algorithm for Dynamic Multiobjective Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2574621 – volume: 20 start-page: 2219 year: 2016 ident: ref_46 article-title: Indicator-based set evolution particle swarm optimization for many-objective problems publication-title: Soft Comput. doi: 10.1007/s00500-015-1637-1 – ident: ref_79 doi: 10.1016/B978-0-12-372529-5.00005-6 – volume: 6 start-page: 182 year: 2002 ident: ref_80 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 32 start-page: 10915 year: 2020 ident: ref_64 article-title: Usability feature extraction using modified crow search algorithm: A novel approach publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3688-6 – volume: 77 start-page: 274 year: 2019 ident: ref_70 article-title: Enhanced crow search algorithm for optimum design of structures publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2019.01.026 |
| SSID | ssj0000913810 |
| Score | 2.2602952 |
| Snippet | Dynamic Multi-Objective Optimization Problems (DMOPs) and Many-Objective Optimization Problems (MaOPs) are two classes of the optimization field that have... |
| SourceID | doaj hal crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 9627 |
| SubjectTerms | beta function Computer Science crow search algorithm dynamic multi-objective optimization problems evolutionary algorithm many-objective optimization problems |
| Title | A Distributed Bi-Behaviors Crow Search Algorithm for Dynamic Multi-Objective Optimization and Many-Objective Optimization Problems |
| URI | https://u-picardie.hal.science/hal-05387223 https://doaj.org/article/e86ff5f9d09946fb95ccefca953df508 |
| Volume | 12 |
| WOSCitedRecordID | wos000866565400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxQxFH8x6EEPRFDjKpDGcFCTidt2um2PC0gw4WMPavA06deDNbCQ3ZU_gL-c1-lAxkTjxWun6Uz6Xt_H9L3fD2Cb8mKMYiQr7oWqapOJ3BUZQ0TLrU5c6JZj6fuhPj42p6d20qP6yjVhBR64bNynZEaICm2kUKYeobcqhITBWSUjqtLmO9S2l0y1NtjyDF1VGvIk5fX5PpiLXHKb-WN6LqhF6ifHcn7_I7V1LPvPYbWLCNm4fMkaPEqzdXjWwwlch7XuBC7Y-w4m-sMLuB2zvYx6mwmrUmQ706rDOpwv2C4l16xUErPxxdnVfLo8v2QUn7K9wkDP2sbb6sT_LAaPnZDpuOx6MpmbRXZEVuJvzyeFhWbxEr7tf_66e1B1jApVkHq4rEgwwZnaOYtGaGucCtk_Oy7RoldKYOTay5y2SJOcrIORHHHohOcxKC1fwcrsapZeA8NoRC1Tpnz0dO6916qOtIQjr-iSxQF8vN_kJnRw45n14qKhtCNLpOlJZADbD5OvC8rGn6ftZGk9TMnQ2O0AKUzTKUzzL4UZwDuS9W9rHIwPmzxGBsloipdu-Jv_8aa38FTkZom29G8DVpbzX2kTnoSb5XQx32oVdgseT74cTX7cATOK83U |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Distributed+Bi-Behaviors+Crow+Search+Algorithm+for+Dynamic+Multi-Objective+Optimization+and+Many-Objective+Optimization+Problems&rft.jtitle=Applied+sciences&rft.au=Ahlem+Aboud&rft.au=Nizar+Rokbani&rft.au=Bilel+Neji&rft.au=Zaher+Al+Barakeh&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=19&rft.spage=9627&rft_id=info:doi/10.3390%2Fapp12199627&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e86ff5f9d09946fb95ccefca953df508 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |