Deep convolutional autoencoder augmented CFD thermal analysis of bearings with inter pad groove mixing

•Bearing groove model via a deep convolutional autoencoder training based on CFD data.•Consideration of 2D temperature distribution at pad leading edge of fluid-film.•Combination of rotor-bearing model and convolutional neural network.•Proposed model validation through comparison to full CFD and ava...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of heat and mass transfer Ročník 188; s. 122639
Hlavní autoři: Yang, Jongin, Palazzolo, Alan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.06.2022
Elsevier BV
Témata:
ISSN:0017-9310, 1879-2189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Bearing groove model via a deep convolutional autoencoder training based on CFD data.•Consideration of 2D temperature distribution at pad leading edge of fluid-film.•Combination of rotor-bearing model and convolutional neural network.•Proposed model validation through comparison to full CFD and available test data.•Accurate heat transfer and temperature prediction for a rotor-bearing system. The treatment of thermal mixing in inter pad grooves of a fluid film bearing is essential due to its influence on the heat transfer with the rotating shaft and stationary bearing. Lower fidelity models that either neglect or over approximate thermal groove mixing may lead to premature bearing or machinery failure, most commonly from babbitt thermally induced fatigue. Conventional models rely on bulk flow and thermal analyses yielding a single temperature at the groove outlet into the pad inlet. The high uncertainty of this approach carries over into downstream predictions for bearing life, stiffness and damping, and machinery vibration predictions. Contrary to a uniform temperature, CFD-Conjugate heat transfer studies reveal large gradient temperature distributions varying in both the radial and axial directions at the groove outlet, especially with jet lubrication implemented with multiple nozzles. These distributions vary continuously with time as the spinning shaft and bearing pads vibrate. A direct CFD simulation thus becomes computationally prohibitive. The present work introduces a novel approach which yields highly detailed lubricant temperature distributions at the pad inlets in a computationally economical manner. This is implemented with a surrogate groove model via a deep convolutional autoencoder neural network based on CFD (Computational Fluid Dynamics) data. The trained Convolutional Neural Network (CNN) shows excellent prediction capability for 2D temperature distribution at a circumferential groove outlet. The trained CNN is combined with a rotor-bearing model, and the combined model is verified by full CFD results and experimental data. In addition, this approach is expanded to include various oil injection types, illustrating their detailed heat transfer to the rotating shaft and bearing.
AbstractList The treatment of thermal mixing in inter pad grooves of a fluid film bearing is essential due to its influence on the heat transfer with the rotating shaft and stationary bearing. Lower fidelity models that either neglect or over approximate thermal groove mixing may lead to premature bearing or machinery failure, most commonly from babbitt thermally induced fatigue. Conventional models rely on bulk flow and thermal analyses yielding a single temperature at the groove outlet into the pad inlet. The high uncertainty of this approach carries over into downstream predictions for bearing life, stiffness and damping, and machinery vibration predictions. Contrary to a uniform temperature, CFD-Conjugate heat transfer studies reveal large gradient temperature distributions varying in both the radial and axial directions at the groove outlet, especially with jet lubrication implemented with multiple nozzles. These distributions vary continuously with time as the spinning shaft and bearing pads vibrate. A direct CFD simulation thus becomes computationally prohibitive. The present work introduces a novel approach which yields highly detailed lubricant temperature distributions at the pad inlets in a computationally economical manner. This is implemented with a surrogate groove model via a deep convolutional autoencoder neural network based on CFD (Computational Fluid Dynamics) data. The trained Convolutional Neural Network (CNN) shows excellent prediction capability for 2D temperature distribution at a circumferential groove outlet. The trained CNN is combined with a rotor-bearing model, and the combined model is verified by full CFD results and experimental data. In addition, this approach is expanded to include various oil injection types, illustrating their detailed heat transfer to the rotating shaft and bearing.
•Bearing groove model via a deep convolutional autoencoder training based on CFD data.•Consideration of 2D temperature distribution at pad leading edge of fluid-film.•Combination of rotor-bearing model and convolutional neural network.•Proposed model validation through comparison to full CFD and available test data.•Accurate heat transfer and temperature prediction for a rotor-bearing system. The treatment of thermal mixing in inter pad grooves of a fluid film bearing is essential due to its influence on the heat transfer with the rotating shaft and stationary bearing. Lower fidelity models that either neglect or over approximate thermal groove mixing may lead to premature bearing or machinery failure, most commonly from babbitt thermally induced fatigue. Conventional models rely on bulk flow and thermal analyses yielding a single temperature at the groove outlet into the pad inlet. The high uncertainty of this approach carries over into downstream predictions for bearing life, stiffness and damping, and machinery vibration predictions. Contrary to a uniform temperature, CFD-Conjugate heat transfer studies reveal large gradient temperature distributions varying in both the radial and axial directions at the groove outlet, especially with jet lubrication implemented with multiple nozzles. These distributions vary continuously with time as the spinning shaft and bearing pads vibrate. A direct CFD simulation thus becomes computationally prohibitive. The present work introduces a novel approach which yields highly detailed lubricant temperature distributions at the pad inlets in a computationally economical manner. This is implemented with a surrogate groove model via a deep convolutional autoencoder neural network based on CFD (Computational Fluid Dynamics) data. The trained Convolutional Neural Network (CNN) shows excellent prediction capability for 2D temperature distribution at a circumferential groove outlet. The trained CNN is combined with a rotor-bearing model, and the combined model is verified by full CFD results and experimental data. In addition, this approach is expanded to include various oil injection types, illustrating their detailed heat transfer to the rotating shaft and bearing.
ArticleNumber 122639
Author Palazzolo, Alan
Yang, Jongin
Author_xml – sequence: 1
  givenname: Jongin
  surname: Yang
  fullname: Yang, Jongin
– sequence: 2
  givenname: Alan
  surname: Palazzolo
  fullname: Palazzolo, Alan
  email: a-palazzolo@tamu.edu
BookMark eNqVkMtuGyEUQFGVSLWd_gNSN9mMywXmtUtk120iS90ka8Qwd2xGnsEF7CZ_X0buKt0kKx736AjOnFyNbkRCboEtgUHxrV_afo86DjqE6PUYOvRLzjhfAueFqD-RGVRlnXGo6isyYwzKrBbAPpN5CP10ZLKYkW6NeKTGjWd3OEXrRn2g-hQdjsa16NN-N-AYsaWrzZrGPfphIhL2GmygrqMNam_HXaB_bNxTm1hPj7qlO-_cGelgX9L0hlx3-hDwy791QZ43359WP7Ptrx8Pq_ttZkTJYlaVTV5rKJHJWkvMGZOgQUAu2takW4CubirZCi1MBQ0WXVUjh04WBTayycWCfL14j979PmGIqncnn14bFC9yKaoSuEzU5kIZ70Lw2Cljo55-n0ragwKmpsaqV_83VlNjdWmcRHdvREdvB-1fP6J4vCgwZTnbNA3GpvrYWo8mqtbZ98v-Agy4q3M
CitedBy_id crossref_primary_10_1080_10402004_2025_2538747
crossref_primary_10_1109_ACCESS_2025_3585402
crossref_primary_10_1177_09576509241248213
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124564
crossref_primary_10_1038_s41598_024_84940_w
crossref_primary_10_1016_j_engappai_2025_112042
crossref_primary_10_1063_5_0272392
crossref_primary_10_1038_s41598_024_71759_8
crossref_primary_10_1016_j_applthermaleng_2025_125561
crossref_primary_10_1016_j_net_2025_103703
Cites_doi 10.1115/1.4041021
10.1016/j.ijheatmasstransfer.2021.120997
10.1016/j.ijheatmasstransfer.2020.120743
10.1115/1.4041130
10.1115/1.3254629
10.1115/1.4041720
10.1080/10402004.2018.1469805
10.1016/j.ijheatmasstransfer.2020.120783
10.1016/j.ijheatmasstransfer.2021.121075
10.1007/s10494-015-9622-4
10.1016/j.ijheatmasstransfer.2021.121199
10.1016/j.triboint.2017.08.025
10.1016/j.triboint.2009.12.002
ContentType Journal Article
Copyright 2022
Copyright Elsevier BV Jun 1, 2022
Copyright_xml – notice: 2022
– notice: Copyright Elsevier BV Jun 1, 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2022.122639
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2022_122639
S0017931022001211
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29J
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDMP
ABDPE
ABJNI
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
T9H
VOH
WUQ
ZY4
~HD
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c370t-87b59a17e049a4e50041a13153ddc7e011f9b84d3a3c81be6f89e21f466eb4b53
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000755663000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Sun Nov 09 06:12:09 EST 2025
Sat Nov 29 07:29:55 EST 2025
Tue Nov 18 22:21:28 EST 2025
Fri Feb 23 02:39:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Groove mixing
Thermal analysis
Rotor-bearing heat transfer
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-87b59a17e049a4e50041a13153ddc7e011f9b84d3a3c81be6f89e21f466eb4b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2654387124
PQPubID 2045464
ParticipantIDs proquest_journals_2654387124
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2022_122639
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122639
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2022_122639
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yang, Palazzolo (bib0012) 2020; 143
Kulhanek (bib0019) 2010
Mitsui, Hori, Tanaka (bib0002) 1983; 105
Ettles (bib0001) 1969; 184
Abdollahi, San Andrés (bib0004) 2018; 141
Mehdi, Jang, Kim (bib0007) 2018; 119
da Silva, Nicoletti (bib0008) 2019; 141
Yang, Palazzolo (bib0011) 2019; 141
Yang, Palazzolo (bib0018) 2020; 143
San Andrés, Li (bib0006) 2015; 137
Zhu, Wen, Zhang (bib0014) 2021; 166
Menter, Smirnov, Liu, Avancha (bib0021) 2015; 95
Liang, Xie, Day, Meng, Wu (bib0013) 2021; 166
Fei, W., Narsilio, G.A., and Disfani, M.M., "Predicting effective thermal conductivity in sands using an artificial neural network with multiscale microstructural parameters," Int. J. Heat Mass Transf., 170, p. 120997.
Kolodziejczyk, Mortazavi, Rabczuk, Zhuang (bib0017) 2021; 172
Suh, Palazzolo (bib0003) 2015; 137
Bo, Z., Li, H., Yang, H., Li, C., Wu, S., Xu, C., Xiong, G., Mariotti, D., Yan, J., Cen, K., and Ostrikov, K., Combinatorial atomistic-to-AI prediction and experimental validation of heating effects in 350 F supercapacitor modules," Int. J. Heat Mass Transf., 171, p. 121075.
Lee, Sun, Kim, Kang (bib0005) 2017; 61
Arihara, Kameyama, Baba, San Andés (bib0009) 2018; 141
Yang, Palazzolo (bib0010) 2019; 141
Bang, Kim, Cho (bib0022) 2010; 43
He, Zhang, Ren, Sun (bib0020) 2015
Yang (10.1016/j.ijheatmasstransfer.2022.122639_bib0012) 2020; 143
Arihara (10.1016/j.ijheatmasstransfer.2022.122639_bib0009) 2018; 141
Mehdi (10.1016/j.ijheatmasstransfer.2022.122639_bib0007) 2018; 119
San Andrés (10.1016/j.ijheatmasstransfer.2022.122639_bib0006) 2015; 137
Menter (10.1016/j.ijheatmasstransfer.2022.122639_bib0021) 2015; 95
Ettles (10.1016/j.ijheatmasstransfer.2022.122639_bib0001) 1969; 184
He (10.1016/j.ijheatmasstransfer.2022.122639_bib0020) 2015
Bang (10.1016/j.ijheatmasstransfer.2022.122639_bib0022) 2010; 43
Kolodziejczyk (10.1016/j.ijheatmasstransfer.2022.122639_bib0017) 2021; 172
Yang (10.1016/j.ijheatmasstransfer.2022.122639_bib0010) 2019; 141
Kulhanek (10.1016/j.ijheatmasstransfer.2022.122639_bib0019) 2010
Lee (10.1016/j.ijheatmasstransfer.2022.122639_bib0005) 2017; 61
10.1016/j.ijheatmasstransfer.2022.122639_bib0015
10.1016/j.ijheatmasstransfer.2022.122639_bib0016
Zhu (10.1016/j.ijheatmasstransfer.2022.122639_bib0014) 2021; 166
Yang (10.1016/j.ijheatmasstransfer.2022.122639_bib0018) 2020; 143
Yang (10.1016/j.ijheatmasstransfer.2022.122639_bib0011) 2019; 141
Abdollahi (10.1016/j.ijheatmasstransfer.2022.122639_bib0004) 2018; 141
Liang (10.1016/j.ijheatmasstransfer.2022.122639_bib0013) 2021; 166
Mitsui (10.1016/j.ijheatmasstransfer.2022.122639_bib0002) 1983; 105
Suh (10.1016/j.ijheatmasstransfer.2022.122639_bib0003) 2015; 137
da Silva (10.1016/j.ijheatmasstransfer.2022.122639_bib0008) 2019; 141
References_xml – volume: 137
  year: 2015
  ident: bib0003
  article-title: Three-dimensional dynamic model of TEHD tilting-pad journal bearing—part I: theoretical modeling
  publication-title: ASME J. Tribol.
– volume: 166
  year: 2021
  ident: bib0013
  article-title: A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity
  publication-title: Int. J. Heat Mass Transf.
– volume: 143
  year: 2020
  ident: bib0018
  article-title: Computational fluid dynamics based mixing prediction for tilt pad journal bearing TEHD modeling—part II: implementation with machine learning
  publication-title: ASME J. Tribol.
– year: 2010
  ident: bib0019
  article-title: Dynamic and Static Characteristics of a Rocker-Pivot, Tilting-Pad Bearing With 50% and 60% Offsets
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib0020
  article-title: Delving deep into rectifers: surpassing humanlevel performance on imagenet classifcation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: Fei, W., Narsilio, G.A., and Disfani, M.M., "Predicting effective thermal conductivity in sands using an artificial neural network with multiscale microstructural parameters," Int. J. Heat Mass Transf., 170, p. 120997.
– volume: 119
  start-page: 175
  year: 2018
  end-page: 189
  ident: bib0007
  article-title: Effects of pivot design on performance of tilting pad journal bearings
  publication-title: Tribol. Int.
– volume: 184
  start-page: 75
  year: 1969
  end-page: 81
  ident: bib0001
  article-title: Hot oil carry-over in thrust bearings
  publication-title: Proc. Inst. Mech. Eng., Conf. Proc.
– volume: 61
  start-page: 1074
  year: 2017
  end-page: 1083
  ident: bib0005
  article-title: Thermal behavior of a worn tilting pad journal bearing: thermohydrodynamic analysis and pad temperature measurement
  publication-title: Tribo. Trans.
– volume: 137
  year: 2015
  ident: bib0006
  article-title: Effect of pad flexibility on the performance of tilting pad journal bearings—benchmarking a predictive model
  publication-title: ASME J. Eng. Gas Turbines Power
– volume: 143
  year: 2020
  ident: bib0012
  article-title: Computational fluid dynamics based mixing prediction for tilt pad journal bearing TEHD modeling—part I: TEHD-CFD model validation and improvements
  publication-title: ASME J. Tribol.
– volume: 141
  year: 2018
  ident: bib0009
  article-title: A thermoelastohydrodynamic analysis for the static performance of high-speed—heavy load tilting-pad journal bearing operating in the turbulent flow regime and comparisons to test data
  publication-title: ASME J. Eng. Gas Turbines Power
– volume: 141
  year: 2018
  ident: bib0004
  article-title: Improved estimation of bearing pads’ inlet temperature: a model for lubricant mixing at oil feed ports and validation against test data
  publication-title: ASME J. Tribol.
– volume: 105
  start-page: 414
  year: 1983
  end-page: 420
  ident: bib0002
  article-title: Thermohydrodynamic analysis of cooling effect of supply oil in circular journal bearing
  publication-title: ASME J. Lubr. Tech.
– volume: 95
  start-page: 583
  year: 2015
  end-page: 619
  ident: bib0021
  article-title: A one equation local correlation-based transition model
  publication-title: Flow, Turbul. Combust.
– volume: 172
  start-page: 121199
  year: 2021
  ident: bib0017
  article-title: Machine learning assisted multiscale modeling of composite phase change materials for Li-ion batteries’ thermal management
  publication-title: Int. J. Heat Mass Transf.
– volume: 141
  year: 2019
  ident: bib0008
  article-title: Design of tilting-pad journal bearings considering bearing clearance uncertainty and reliability analysis
  publication-title: ASME J. Tribol.
– volume: 141
  year: 2019
  ident: bib0011
  article-title: 3D thermo-elasto-hydrodynamic CFD model of a tilting pad journal bearing—part II: dynamic response
  publication-title: ASME J. Tribol.
– reference: Bo, Z., Li, H., Yang, H., Li, C., Wu, S., Xu, C., Xiong, G., Mariotti, D., Yan, J., Cen, K., and Ostrikov, K., Combinatorial atomistic-to-AI prediction and experimental validation of heating effects in 350 F supercapacitor modules," Int. J. Heat Mass Transf., 171, p. 121075.
– volume: 43
  start-page: 1287
  year: 2010
  end-page: 1293
  ident: bib0022
  article-title: Comparison of power loss and pad temperature for leading edge groove tilting pad journal bearings and conventional tilting pad journal bearings
  publication-title: Tribol. Int.
– volume: 166
  year: 2021
  ident: bib0014
  article-title: Machine learning based approach for the prediction of flow boiling/condensation heat transfer performance in mini channels with serrated fins
  publication-title: Int. J. Heat Mass Transf.
– volume: 141
  year: 2019
  ident: bib0010
  article-title: 3D thermo-elasto-hydrodynamic CFD model of a tilting pad journal bearing—part I: static response
  publication-title: ASME J. Tribol.
– volume: 141
  issue: 1
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0008
  article-title: Design of tilting-pad journal bearings considering bearing clearance uncertainty and reliability analysis
  publication-title: ASME J. Tribol.
  doi: 10.1115/1.4041021
– ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0015
  doi: 10.1016/j.ijheatmasstransfer.2021.120997
– volume: 166
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0013
  article-title: A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120743
– volume: 141
  issue: 2
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0009
  article-title: A thermoelastohydrodynamic analysis for the static performance of high-speed—heavy load tilting-pad journal bearing operating in the turbulent flow regime and comparisons to test data
  publication-title: ASME J. Eng. Gas Turbines Power
  doi: 10.1115/1.4041130
– volume: 184
  start-page: 75
  issue: 12
  year: 1969
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0001
  article-title: Hot oil carry-over in thrust bearings
  publication-title: Proc. Inst. Mech. Eng., Conf. Proc.
– volume: 143
  issue: 1
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0012
  article-title: Computational fluid dynamics based mixing prediction for tilt pad journal bearing TEHD modeling—part I: TEHD-CFD model validation and improvements
  publication-title: ASME J. Tribol.
– volume: 105
  start-page: 414
  issue: 3
  year: 1983
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0002
  article-title: Thermohydrodynamic analysis of cooling effect of supply oil in circular journal bearing
  publication-title: ASME J. Lubr. Tech.
  doi: 10.1115/1.3254629
– start-page: 1026
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0020
  article-title: Delving deep into rectifers: surpassing humanlevel performance on imagenet classifcation
– volume: 141
  issue: 3
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0004
  article-title: Improved estimation of bearing pads’ inlet temperature: a model for lubricant mixing at oil feed ports and validation against test data
  publication-title: ASME J. Tribol.
  doi: 10.1115/1.4041720
– volume: 137
  issue: 4
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0003
  article-title: Three-dimensional dynamic model of TEHD tilting-pad journal bearing—part I: theoretical modeling
  publication-title: ASME J. Tribol.
– volume: 61
  start-page: 1074
  issue: 6
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0005
  article-title: Thermal behavior of a worn tilting pad journal bearing: thermohydrodynamic analysis and pad temperature measurement
  publication-title: Tribo. Trans.
  doi: 10.1080/10402004.2018.1469805
– volume: 166
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0014
  article-title: Machine learning based approach for the prediction of flow boiling/condensation heat transfer performance in mini channels with serrated fins
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120783
– ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0016
  doi: 10.1016/j.ijheatmasstransfer.2021.121075
– volume: 95
  start-page: 583
  issue: 4
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0021
  article-title: A one equation local correlation-based transition model
  publication-title: Flow, Turbul. Combust.
  doi: 10.1007/s10494-015-9622-4
– volume: 141
  issue: 6
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0010
  article-title: 3D thermo-elasto-hydrodynamic CFD model of a tilting pad journal bearing—part I: static response
  publication-title: ASME J. Tribol.
– year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0019
– volume: 141
  issue: 6
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0011
  article-title: 3D thermo-elasto-hydrodynamic CFD model of a tilting pad journal bearing—part II: dynamic response
  publication-title: ASME J. Tribol.
– volume: 137
  issue: 12
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0006
  article-title: Effect of pad flexibility on the performance of tilting pad journal bearings—benchmarking a predictive model
  publication-title: ASME J. Eng. Gas Turbines Power
– volume: 172
  start-page: 121199
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0017
  article-title: Machine learning assisted multiscale modeling of composite phase change materials for Li-ion batteries’ thermal management
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121199
– volume: 119
  start-page: 175
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0007
  article-title: Effects of pivot design on performance of tilting pad journal bearings
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2017.08.025
– volume: 143
  issue: 1
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0018
  article-title: Computational fluid dynamics based mixing prediction for tilt pad journal bearing TEHD modeling—part II: implementation with machine learning
  publication-title: ASME J. Tribol.
– volume: 43
  start-page: 1287
  issue: 8
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2022.122639_bib0022
  article-title: Comparison of power loss and pad temperature for leading edge groove tilting pad journal bearings and conventional tilting pad journal bearings
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2009.12.002
SSID ssj0017046
Score 2.4801753
Snippet •Bearing groove model via a deep convolutional autoencoder training based on CFD data.•Consideration of 2D temperature distribution at pad leading edge of...
The treatment of thermal mixing in inter pad grooves of a fluid film bearing is essential due to its influence on the heat transfer with the rotating shaft and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122639
SubjectTerms Artificial neural networks
Computational fluid dynamics
Deep learning
Economic models
Groove mixing
Grooves
Heat transfer
Heat treatment
Inlets
Lubricants
Lubricants & lubrication
Mathematical models
Neural networks
Rotating shafts
Rotor-bearing heat transfer
Stiffness
Temperature distribution
Thermal analysis
Vibration damping
Title Deep convolutional autoencoder augmented CFD thermal analysis of bearings with inter pad groove mixing
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2022.122639
https://www.proquest.com/docview/2654387124
Volume 188
WOSCitedRecordID wos000755663000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBat05ZcSp80bVp06KFg1qy8D0mnEpyEtpRQaFrc06JdaYONYxs_gsmvz4weu0n6oIb2shiBJa3m25lP0ugTIW-VzgVTPI50KfMorZI4EjqrI5VD7ALGXCm7oP_9Mz85EcOh_OK3C5b2OgE-nYrNRs7_q6mhDIyNR2e3MHdTKRTAbzA6PMHs8Pwrwx8aM7fJ5L4VFANYr2YoWIm6EWp9ZnU4dXdwfIi0EzwzygW02iQljIi9zNOu0aKexKI7V7p7BiT7wnTPR5sQ7sZtGny7qnhNiwIdvd2dOAeKjrdRAEdus4F_qJANjJqI7V7WRF1ezib--I0Hr1-XgCltkz_lFsvCgZk2O8k6YAiKMvGZrMb5XMFlBExD3nTK4pcO3q01jHujMb4C9j50voed6DGgk04d6ZaM9tfY-iKc4Dpdu7tkp88zKTpk5-Dj0fBTs_fEY3e8K3T1AXnXZgX-ud3fkZtbYd5yl9NH5KGfdNADB5bH5I6ZPiH3bfJvtXxKaoQMvQEZeg0ytIEMBchQDxkaIENnNQ2QoQgZaiFDATLUQYY6yDwj346PTgcfIn__RlQlPF5BoCwzqRg3MItUqclQm02xBGKk1hWUMlbLUqQ6UUkFsx-T10KaPqvTPDdlWmbJc9KZzqbmBaG1ziGQqlhJptOsTkUtK5YoluVlyfta7JH3YeCKyovT4x0pkyJkIY6Ln4e-wKEv3NDvEdnUMHdCLVv8dxBsVXji6QhlAbDbopb9YObCf2rLoo9ntwUHFv3ynzTyiuy2H9s-6awWa_Oa3KsuVqPl4o2H8hXZ_cYu
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+convolutional+autoencoder+augmented+CFD+thermal+analysis+of+bearings+with+inter+pad+groove+mixing&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Yang%2C+Jongin&rft.au=Palazzolo%2C+Alan&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=188&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2022.122639&rft.externalDocID=S0017931022001211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon