Reoviruses hijack the SMARCB1-MYC transcriptional regulation complex to activate autophagy for persistent viral infection in leafhopper vector

Autophagy plays a crucial role in virus-host interactions, as viral components and particles can be degraded by the host’s autophagic machinery. Additionally, some viruses can hijack autophagy for their own benefit. However, the mechanisms underlying the transcriptional regulation of autophagy by ar...

Full description

Saved in:
Bibliographic Details
Published in:PLoS pathogens Vol. 21; no. 10; p. e1013569
Main Authors: Wang, Hui, Liu, Runfa, Xiao, Guangming, Li, Yanan, Li, Bozhong, Chen, Qian, Wei, Taiyun
Format: Journal Article
Language:English
Published: United States Public Library of Science (PLoS) 01.10.2025
Subjects:
ISSN:1553-7374, 1553-7366, 1553-7374
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Autophagy plays a crucial role in virus-host interactions, as viral components and particles can be degraded by the host’s autophagic machinery. Additionally, some viruses can hijack autophagy for their own benefit. However, the mechanisms underlying the transcriptional regulation of autophagy by arboviruses in insect vectors remain largely unexplored. In this study, we found that rice dwarf virus (RDV) infection activates the autophagy pathway in the leafhopper vector, Nephotettix cincticeps , and this autophagy activation also facilitates viral infection in the leafhopper. We identified that MYC transcription factor regulates the expression of autophagy proteins ATG5 and ATG8 by directly targeting their promoters. A transcription regulator SMARCB1 binds to MYC and impedes its recognition of the ATG5 and ATG8 promoters, thus negatively regulating their expression. Moreover, NcSMARCB1 negatively regulates ATG5 expression by directly binding to its promoter. RDV major outer capsid protein P8 blocks the nuclear translocation of SMARCB1, disrupting the SMARCB1-MYC interaction and thereby relieving the transcriptional inhibition of ATG5 and ATG8, which leads to autophagy activation. Furthermore, major outer capsid protein P8 of rice gall dwarf virus (RGDV), same to RDV belonging to plant reoviruses, also interacts with SMARCB1 in leafhopper Recilia dorsalis , preventing its nuclear translocation. Similarly, suppression of SMARCB1 expression enhances autophagy formation and promotes RGDV infection. These findings highlight the critical role of insect vector SMARCB1 and MYC in regulating autophagy in response to arbovirus infection.
AbstractList Autophagy plays a crucial role in virus-host interactions, as viral components and particles can be degraded by the host’s autophagic machinery. Additionally, some viruses can hijack autophagy for their own benefit. However, the mechanisms underlying the transcriptional regulation of autophagy by arboviruses in insect vectors remain largely unexplored. In this study, we found that rice dwarf virus (RDV) infection activates the autophagy pathway in the leafhopper vector, Nephotettix cincticeps , and this autophagy activation also facilitates viral infection in the leafhopper. We identified that MYC transcription factor regulates the expression of autophagy proteins ATG5 and ATG8 by directly targeting their promoters. A transcription regulator SMARCB1 binds to MYC and impedes its recognition of the ATG5 and ATG8 promoters, thus negatively regulating their expression. Moreover, NcSMARCB1 negatively regulates ATG5 expression by directly binding to its promoter. RDV major outer capsid protein P8 blocks the nuclear translocation of SMARCB1, disrupting the SMARCB1-MYC interaction and thereby relieving the transcriptional inhibition of ATG5 and ATG8, which leads to autophagy activation. Furthermore, major outer capsid protein P8 of rice gall dwarf virus (RGDV), same to RDV belonging to plant reoviruses, also interacts with SMARCB1 in leafhopper Recilia dorsalis , preventing its nuclear translocation. Similarly, suppression of SMARCB1 expression enhances autophagy formation and promotes RGDV infection. These findings highlight the critical role of insect vector SMARCB1 and MYC in regulating autophagy in response to arbovirus infection.
Autophagy plays a crucial role in virus-host interactions, as viral components and particles can be degraded by the host's autophagic machinery. Additionally, some viruses can hijack autophagy for their own benefit. However, the mechanisms underlying the transcriptional regulation of autophagy by arboviruses in insect vectors remain largely unexplored. In this study, we found that rice dwarf virus (RDV) infection activates the autophagy pathway in the leafhopper vector, Nephotettix cincticeps, and this autophagy activation also facilitates viral infection in the leafhopper. We identified that MYC transcription factor regulates the expression of autophagy proteins ATG5 and ATG8 by directly targeting their promoters. A transcription regulator SMARCB1 binds to MYC and impedes its recognition of the ATG5 and ATG8 promoters, thus negatively regulating their expression. Moreover, NcSMARCB1 negatively regulates ATG5 expression by directly binding to its promoter. RDV major outer capsid protein P8 blocks the nuclear translocation of SMARCB1, disrupting the SMARCB1-MYC interaction and thereby relieving the transcriptional inhibition of ATG5 and ATG8, which leads to autophagy activation. Furthermore, major outer capsid protein P8 of rice gall dwarf virus (RGDV), same to RDV belonging to plant reoviruses, also interacts with SMARCB1 in leafhopper Recilia dorsalis, preventing its nuclear translocation. Similarly, suppression of SMARCB1 expression enhances autophagy formation and promotes RGDV infection. These findings highlight the critical role of insect vector SMARCB1 and MYC in regulating autophagy in response to arbovirus infection.Autophagy plays a crucial role in virus-host interactions, as viral components and particles can be degraded by the host's autophagic machinery. Additionally, some viruses can hijack autophagy for their own benefit. However, the mechanisms underlying the transcriptional regulation of autophagy by arboviruses in insect vectors remain largely unexplored. In this study, we found that rice dwarf virus (RDV) infection activates the autophagy pathway in the leafhopper vector, Nephotettix cincticeps, and this autophagy activation also facilitates viral infection in the leafhopper. We identified that MYC transcription factor regulates the expression of autophagy proteins ATG5 and ATG8 by directly targeting their promoters. A transcription regulator SMARCB1 binds to MYC and impedes its recognition of the ATG5 and ATG8 promoters, thus negatively regulating their expression. Moreover, NcSMARCB1 negatively regulates ATG5 expression by directly binding to its promoter. RDV major outer capsid protein P8 blocks the nuclear translocation of SMARCB1, disrupting the SMARCB1-MYC interaction and thereby relieving the transcriptional inhibition of ATG5 and ATG8, which leads to autophagy activation. Furthermore, major outer capsid protein P8 of rice gall dwarf virus (RGDV), same to RDV belonging to plant reoviruses, also interacts with SMARCB1 in leafhopper Recilia dorsalis, preventing its nuclear translocation. Similarly, suppression of SMARCB1 expression enhances autophagy formation and promotes RGDV infection. These findings highlight the critical role of insect vector SMARCB1 and MYC in regulating autophagy in response to arbovirus infection.
Author Wang, Hui
Li, Bozhong
Liu, Runfa
Wei, Taiyun
Xiao, Guangming
Li, Yanan
Chen, Qian
Author_xml – sequence: 1
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
– sequence: 2
  givenname: Runfa
  surname: Liu
  fullname: Liu, Runfa
– sequence: 3
  givenname: Guangming
  surname: Xiao
  fullname: Xiao, Guangming
– sequence: 4
  givenname: Yanan
  surname: Li
  fullname: Li, Yanan
– sequence: 5
  givenname: Bozhong
  surname: Li
  fullname: Li, Bozhong
– sequence: 6
  givenname: Qian
  surname: Chen
  fullname: Chen, Qian
– sequence: 7
  givenname: Taiyun
  orcidid: 0000-0002-0732-9752
  surname: Wei
  fullname: Wei, Taiyun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41066408$$D View this record in MEDLINE/PubMed
BookMark eNpNkctu2zAQRYkgQV7tHxQFl93IIUVKIpep0TYBEgRIs-mKGNFDm64sqiRlND_Rb678aNAVh4Mz9y7OFTntQ4-EfOBsxkXDb9ZhjD10s2GAPOOMi6rWJ-SSV5UoGtHI0__mC3KV0poxyQWvz8mF5KyuJVOX5M8zhq2PY8JEV34N9ifNK6TfH2-f55958fhjTnOEPtnoh-zDVEgjLscOdh9qw2bo8DfNgYLNfgsZKYw5DCtYvlIXIh0wJp8y9plONdO17x3a_bHvaYfgVmGYILqdtiG-I2cOuoTvj-81efn65WV-Vzw8fbuf3z4UVjQsF0rU7aJFAWDRWYeorELQqlRtKy2wVvNGl0pwx2phFWjmmsoxW3JmtWvENbk_xC4CrM0Q_QbiqwngzX4R4tJAzN52aEquGTAhdM2FVBx024p6n61LiVpMWZ8OWUMMv0ZM2Wx8sth10GMYkxFlpVVVlbKa0I9HdGw3uHgr_qdjAuQBsDGkFNG9IZyZnXVztG521s3RuvgL6dKldQ
Cites_doi 10.1016/j.ymeth.2015.01.008
10.1016/S0021-9258(18)54636-6
10.1038/ncb2788
10.1099/vir.0.81425-0
10.1080/15548627.2021.1954773
10.1128/MCB.24.10.4476-4486.2004
10.1016/j.dci.2022.104406
10.1371/journal.ppat.1003032
10.1038/s41467-019-10022-5
10.1016/j.chom.2014.04.004
10.1126/science.1193497
10.1038/nature06639
10.1371/journal.ppat.1011134
10.1093/hmg/ddt381
10.1007/978-1-59745-157-4_4
10.1080/15548627.2016.1192749
10.1016/j.tibs.2014.02.003
10.1089/ars.2011.4394
10.1111/ajco.13449
10.1038/ng.3958
10.1371/journal.ppat.1006727
10.1146/annurev-phyto-080615-095900
10.1038/8811
10.1172/JCI62973
10.1111/j.1750-3639.1991.tb00058.x
10.1098/rstb.2018.0320
10.1080/15548627.2022.2091904
10.1038/s41419-023-06248-3
10.1128/JVI.02167-05
10.3390/cells2010083
10.1080/15548627.2022.2115830
10.1016/j.tim.2023.06.008
10.1080/15384101.2016.1146836
10.1073/pnas.1332764100
10.1074/jbc.M702824200
10.1038/nmicrobiol.2017.25
10.1038/nature18014
10.1016/j.cell.2010.01.028
10.3390/ijms22168527
10.1128/JVI.00050-07
10.14336/AD.2023.0520
10.7150/thno.34887
10.1016/j.cell.2014.11.006
10.2147/OTT.S210575
10.1080/15548627.2023.2200352
ContentType Journal Article
Copyright Copyright: © 2025 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Copyright_xml – notice: Copyright: © 2025 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1371/journal.ppat.1013569
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1553-7374
ExternalDocumentID oai_doaj_org_article_2190a0339613481a9bb3692831924e93
41066408
10_1371_journal_ppat_1013569
Genre Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
~8M
ADRAZ
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
7X8
ID FETCH-LOGICAL-c370t-836bdbe3aacefcfee8c8ea9828bb4ca0b91792831f063c8a90f75f0c210c9f73
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001591829000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7374
1553-7366
IngestDate Mon Oct 20 20:00:30 EDT 2025
Sat Oct 11 06:38:02 EDT 2025
Mon Oct 13 01:40:49 EDT 2025
Sat Nov 29 07:18:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Copyright: © 2025 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-836bdbe3aacefcfee8c8ea9828bb4ca0b91792831f063c8a90f75f0c210c9f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0732-9752
OpenAccessLink https://doaj.org/article/2190a0339613481a9bb3692831924e93
PMID 41066408
PQID 3259855245
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2190a0339613481a9bb3692831924e93
proquest_miscellaneous_3259855245
pubmed_primary_41066408
crossref_primary_10_1371_journal_ppat_1013569
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2025
Publisher Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science (PLoS)
References SW Cheng (ppat.1013569.ref033) 1999; 22
L-L Wang (ppat.1013569.ref020) 2016; 12
L Esteban-Martínez (ppat.1013569.ref006) 2015; 75
Y Chen (ppat.1013569.ref022) 2017; 13
S Pankiv (ppat.1013569.ref036) 2007; 282
C Chen (ppat.1013569.ref012) 2022; 132
H Li (ppat.1013569.ref040) 2019; 9
X Li (ppat.1013569.ref011) 2023; 19
T Wei (ppat.1013569.ref039) 2016; 54
AI Chiramel (ppat.1013569.ref034) 2013; 2
LS Hart (ppat.1013569.ref044) 2012; 122
W Wu (ppat.1013569.ref031) 2019; 374
PPC Toh (ppat.1013569.ref045) 2013; 22
P Boya (ppat.1013569.ref004) 2013; 15
IP Nezis (ppat.1013569.ref035) 2012; 17
KI Chan (ppat.1013569.ref015) 2024; 15
D Jia (ppat.1013569.ref030) 2017; 2
RT Nakayama (ppat.1013569.ref046) 2017; 49
Q Chen (ppat.1013569.ref025) 2023; 19
N Mizushima (ppat.1013569.ref009) 2008; 451
Z Berkova (ppat.1013569.ref038) 2006; 80
W Liu (ppat.1013569.ref019) 2023; 31
A Stojanova (ppat.1013569.ref049) 2016; 15
M Li (ppat.1013569.ref013) 2021; 54
AM Weissmiller (ppat.1013569.ref048) 2019; 10
Q Chen (ppat.1013569.ref028) 2012; 8
Z Li (ppat.1013569.ref016) 2003; 100
T Wei (ppat.1013569.ref029) 2007; 81
JD Rabinowitz (ppat.1013569.ref010) 2010; 330
A Medda (ppat.1013569.ref017) 2023; 14
X Li (ppat.1013569.ref002) 2023; 9
N Mizushima (ppat.1013569.ref005) 2010; 140
M Fukuda (ppat.1013569.ref008) 1991; 266
D Jia (ppat.1013569.ref026) 2022; 18
L Jahangiri (ppat.1013569.ref042) 2021; 22
L Zhang (ppat.1013569.ref024) 2023; 19
T Wei (ppat.1013569.ref027) 2006; 87
K Cui (ppat.1013569.ref047) 2004; 24
AE Webb (ppat.1013569.ref014) 2014; 39
Q Liang (ppat.1013569.ref023) 2023; 19
H Mo (ppat.1013569.ref043) 2019; 12
L Galluzzi (ppat.1013569.ref001) 2014; 159
Q Wang (ppat.1013569.ref021) 2022; 18
I Tanida (ppat.1013569.ref007) 2008; 445
B Ding (ppat.1013569.ref037) 2014; 15
RM Usman (ppat.1013569.ref041) 2021; 17
BR Stanton (ppat.1013569.ref032) 1992; 2
H-JR Shin (ppat.1013569.ref003) 2016; 534
N Theodosakis (ppat.1013569.ref018) 2021; 22
References_xml – volume: 75
  start-page: 79
  year: 2015
  ident: ppat.1013569.ref006
  article-title: Autophagic flux determination in vivo and ex vivo
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.01.008
– volume: 266
  start-page: 21327
  year: 1991
  ident: ppat.1013569.ref008
  article-title: Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)54636-6
– volume: 15
  start-page: 713
  issue: 7
  year: 2013
  ident: ppat.1013569.ref004
  article-title: Emerging regulation and functions of autophagy
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2788
– volume: 87
  start-page: 429
  year: 2006
  ident: ppat.1013569.ref027
  article-title: Pns12 protein of Rice dwarf virus is essential for formation of viroplasms and nucleation of viral-assembly complexes
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.81425-0
– volume: 18
  start-page: 745
  issue: 4
  year: 2022
  ident: ppat.1013569.ref021
  article-title: Rice black-streaked dwarf virus P10 promotes phosphorylation of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) to induce autophagy in Laodelphax striatellus
  publication-title: Autophagy
  doi: 10.1080/15548627.2021.1954773
– volume: 24
  start-page: 4476
  issue: 10
  year: 2004
  ident: ppat.1013569.ref047
  article-title: The chromatin-remodeling BAF complex mediates cellular antiviral activities by promoter priming
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.10.4476-4486.2004
– volume: 132
  start-page: 104406
  year: 2022
  ident: ppat.1013569.ref012
  article-title: Relish regulates innate immunity via mediating ATG5 activity in Antheraea pernyi
  publication-title: Dev Comp Immunol
  doi: 10.1016/j.dci.2022.104406
– volume: 8
  issue: 11
  year: 2012
  ident: ppat.1013569.ref028
  article-title: Tubular structure induced by a plant virus facilitates viral spread in its vector insect
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003032
– volume: 10
  start-page: 2014
  issue: 1
  year: 2019
  ident: ppat.1013569.ref048
  article-title: Inhibition of MYC by the SMARCB1 tumor suppressor
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10022-5
– volume: 15
  start-page: 564
  issue: 5
  year: 2014
  ident: ppat.1013569.ref037
  article-title: Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome-lysosome fusion to increase virus production
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.04.004
– volume: 330
  start-page: 1344
  issue: 6009
  year: 2010
  ident: ppat.1013569.ref010
  article-title: Autophagy and metabolism
  publication-title: Science
  doi: 10.1126/science.1193497
– volume: 22
  start-page: 151
  year: 2021
  ident: ppat.1013569.ref018
  article-title: The role of MiT/TFE family members in autophagy regulation
  publication-title: Curr Top Biochem Res
– volume: 451
  start-page: 1069
  issue: 7182
  year: 2008
  ident: ppat.1013569.ref009
  article-title: Autophagy fights disease through cellular self-digestion
  publication-title: Nature
  doi: 10.1038/nature06639
– volume: 19
  issue: 1
  year: 2023
  ident: ppat.1013569.ref024
  article-title: Southern rice black-streaked dwarf virus induces incomplete autophagy for persistence in gut epithelial cells of its vector insect
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1011134
– volume: 22
  start-page: 5237
  issue: 25
  year: 2013
  ident: ppat.1013569.ref045
  article-title: Myc inhibition impairs autophagosome formation
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddt381
– volume: 445
  start-page: 77
  year: 2008
  ident: ppat.1013569.ref007
  article-title: LC3 and Autophagy
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-59745-157-4_4
– volume: 12
  start-page: 1560
  issue: 9
  year: 2016
  ident: ppat.1013569.ref020
  article-title: The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1192749
– volume: 39
  start-page: 159
  issue: 4
  year: 2014
  ident: ppat.1013569.ref014
  article-title: FOXO transcription factors: key regulators of cellular quality control
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2014.02.003
– volume: 17
  start-page: 786
  issue: 5
  year: 2012
  ident: ppat.1013569.ref035
  article-title: p62 at the interface of autophagy, oxidative stress signaling, and cancer
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2011.4394
– volume: 17
  start-page: 193
  issue: 3
  year: 2021
  ident: ppat.1013569.ref041
  article-title: Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance
  publication-title: Asia Pac J Clin Oncol
  doi: 10.1111/ajco.13449
– volume: 49
  start-page: 1613
  issue: 11
  year: 2017
  ident: ppat.1013569.ref046
  article-title: SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters
  publication-title: Nat Genet
  doi: 10.1038/ng.3958
– volume: 13
  issue: 11
  year: 2017
  ident: ppat.1013569.ref022
  article-title: Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1006727
– volume: 54
  start-page: 99
  year: 2016
  ident: ppat.1013569.ref039
  article-title: Rice Reoviruses in Insect Vectors
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev-phyto-080615-095900
– volume: 22
  start-page: 102
  issue: 1
  year: 1999
  ident: ppat.1013569.ref033
  article-title: c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function
  publication-title: Nat Genet
  doi: 10.1038/8811
– volume: 122
  start-page: 4621
  issue: 12
  year: 2012
  ident: ppat.1013569.ref044
  article-title: ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth
  publication-title: J Clin Invest
  doi: 10.1172/JCI62973
– volume: 2
  start-page: 71
  issue: 1
  year: 1992
  ident: ppat.1013569.ref032
  article-title: The N-myc proto-oncogene: developmental expression and in vivo site-directed mutagenesis
  publication-title: Brain Pathol
  doi: 10.1111/j.1750-3639.1991.tb00058.x
– volume: 54
  issue: 12
  year: 2021
  ident: ppat.1013569.ref013
  article-title: Loss of SMARCB1 promotes autophagy and facilitates tumour progression in chordoma by transcriptionally activating ATG5
  publication-title: Cell Prolif
– volume: 374
  start-page: 20180320
  issue: 1767
  year: 2019
  ident: ppat.1013569.ref031
  article-title: Interaction of viral pathogen with porin channels on the outer membrane of insect bacterial symbionts mediates their joint transovarial transmission
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2018.0320
– volume: 19
  start-page: 616
  issue: 2
  year: 2023
  ident: ppat.1013569.ref023
  article-title: A plant nonenveloped double-stranded RNA virus activates and co-opts BNIP3-mediated mitophagy to promote persistent infection in its insect vector
  publication-title: Autophagy
  doi: 10.1080/15548627.2022.2091904
– volume: 14
  start-page: 719
  issue: 11
  year: 2023
  ident: ppat.1013569.ref017
  article-title: c-MYC-dependent transcriptional inhibition of autophagy is implicated in cisplatin sensitivity in HPV-positive head and neck cancer
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-023-06248-3
– volume: 80
  start-page: 6061
  issue: 12
  year: 2006
  ident: ppat.1013569.ref038
  article-title: Rotavirus NSP4 induces a novel vesicular compartment regulated by calcium and associated with viroplasms
  publication-title: J Virol
  doi: 10.1128/JVI.02167-05
– volume: 2
  start-page: 83
  issue: 1
  year: 2013
  ident: ppat.1013569.ref034
  article-title: Divergent roles of autophagy in virus infection
  publication-title: Cells
  doi: 10.3390/cells2010083
– volume: 19
  start-page: 1100
  issue: 4
  year: 2023
  ident: ppat.1013569.ref025
  article-title: GAPDH mediates plant reovirus-induced incomplete autophagy for persistent viral infection in leafhopper vector
  publication-title: Autophagy
  doi: 10.1080/15548627.2022.2115830
– volume: 31
  start-page: 1251
  issue: 12
  year: 2023
  ident: ppat.1013569.ref019
  article-title: Plant reoviruses hijack autophagy in insect vectors
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2023.06.008
– volume: 15
  start-page: 1693
  issue: 13
  year: 2016
  ident: ppat.1013569.ref049
  article-title: MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2016.1146836
– volume: 100
  start-page: 8164
  issue: 14
  year: 2003
  ident: ppat.1013569.ref016
  article-title: A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1332764100
– volume: 282
  start-page: 24131
  issue: 33
  year: 2007
  ident: ppat.1013569.ref036
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M702824200
– volume: 2
  start-page: 17025
  year: 2017
  ident: ppat.1013569.ref030
  article-title: Insect symbiotic bacteria harbour viral pathogens for transovarial transmission
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2017.25
– volume: 534
  start-page: 553
  issue: 7608
  year: 2016
  ident: ppat.1013569.ref003
  article-title: AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy
  publication-title: Nature
  doi: 10.1038/nature18014
– volume: 140
  start-page: 313
  issue: 3
  year: 2010
  ident: ppat.1013569.ref005
  article-title: Methods in mammalian autophagy research
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.028
– volume: 22
  start-page: 8527
  issue: 16
  year: 2021
  ident: ppat.1013569.ref042
  article-title: The Contribution of Autophagy and LncRNAs to MYC-Driven Gene Regulatory Networks in Cancers
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22168527
– volume: 18
  issue: 5
  year: 2022
  ident: ppat.1013569.ref026
  article-title: A nonstructural protein encoded by a rice reovirus induces an incomplete autophagy to promote viral spread in insect vectors
  publication-title: PLoS Pathog
– volume: 81
  start-page: 7811
  issue: 14
  year: 2007
  ident: ppat.1013569.ref029
  article-title: Entry of Rice dwarf virus into cultured cells of its insect vector involves clathrin-mediated endocytosis
  publication-title: J Virol
  doi: 10.1128/JVI.00050-07
– volume: 15
  start-page: 640
  issue: 2
  year: 2024
  ident: ppat.1013569.ref015
  article-title: MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products
  publication-title: Aging Dis
  doi: 10.14336/AD.2023.0520
– volume: 9
  start-page: 5134
  issue: 18
  year: 2019
  ident: ppat.1013569.ref040
  article-title: C-myc/miR-150/EPG5 axis mediated dysfunction of autophagy promotes development of non-small cell lung cancer
  publication-title: Theranostics
  doi: 10.7150/thno.34887
– volume: 159
  start-page: 1263
  issue: 6
  year: 2014
  ident: ppat.1013569.ref001
  article-title: Metabolic control of autophagy
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.006
– volume: 12
  start-page: 7527
  year: 2019
  ident: ppat.1013569.ref043
  article-title: PLK1 contributes to autophagy by regulating MYC stabilization in osteosarcoma cells
  publication-title: Onco Targets Ther
  doi: 10.2147/OTT.S210575
– volume: 9
  issue: 10
  year: 2023
  ident: ppat.1013569.ref002
  article-title: The TORC1 activates Rpd3L complex to deacetylate Ino80 and H2A.Z and repress autophagy
  publication-title: Sci Adv
– volume: 19
  start-page: 2824
  issue: 10
  year: 2023
  ident: ppat.1013569.ref011
  article-title: Transcriptional regulation of autophagy by chromatin remodeling complex and histone variant
  publication-title: Autophagy
  doi: 10.1080/15548627.2023.2200352
SSID ssj0041316
Score 2.478365
Snippet Autophagy plays a crucial role in virus-host interactions, as viral components and particles can be degraded by the host’s autophagic machinery. Additionally,...
Autophagy plays a crucial role in virus-host interactions, as viral components and particles can be degraded by the host's autophagic machinery. Additionally,...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e1013569
SubjectTerms Animals
Autophagy - physiology
Hemiptera - metabolism
Hemiptera - virology
Insect Vectors - virology
Plant Diseases - virology
Proto-Oncogene Proteins c-myc - genetics
Proto-Oncogene Proteins c-myc - metabolism
Reoviridae - pathogenicity
Reoviridae - physiology
SMARCB1 Protein - genetics
SMARCB1 Protein - metabolism
Title Reoviruses hijack the SMARCB1-MYC transcriptional regulation complex to activate autophagy for persistent viral infection in leafhopper vector
URI https://www.ncbi.nlm.nih.gov/pubmed/41066408
https://www.proquest.com/docview/3259855245
https://doaj.org/article/2190a0339613481a9bb3692831924e93
Volume 21
WOSCitedRecordID wos001591829000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: M7P
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: 7X7
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: BENPR
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: PIMPY
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaggMQF8WwDNDISV9NN7fXj2ESNitREq9BDelrZjk0D1e4q2UT0T_CbGdu7VS-ICxdrH9au5Rl75rPH3yD02SjN3cjkRHFJCRNUEelzTqySkrEVWGwdeWYvxXwul0tVPEj1FWLCEj1w6rgTGFGZzihVYHeYHGllDOUKjGJADk5Fnk_wenowleZgmJlj0tOQFIcIynl3aI6K0Uknoy9NoyN9NM1DsPMDoxS5-__ucEbDM32JXnQeIz5LLX2FHrnqNXqWckjevUG_F67erze7rdvim_UPbX9i8Onwt9nZYjIekdn1BLfBHvWzA3xqk_LPww2OEeXuF25rHE447MHzxHoXyAb09zsMDi1uwoIaqELV4hAPfIv78K0KrvCt0_6mbqAS3sf1_7foanp-NbkgXZIFYqnIWiIpNyvjqNbWeeudk1Y6rQCIGcOszgzgudjdHpwZK7XKvMh9ZgEqWuUFfYcOqrpyRwhnwjANDpNhfsUytjKaGuMBARnupGd8gEjfyWWTqDTKuJ8mAIKkviyDUMpOKAM0DpK4rxuIsOMDUI-yU4_yX-oxQJ96OZYwcMJuiK5cvduWFICfzPNTlg_QYRLw_a8YAGXOMvn-fzThA3p-GpIGxwjAj-ig3ezcMXpq9-16uxmix2IpYimH6Mn4fF4shlGXoZwWl8MQjFrAm-LrrLj-AzC3-LI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reoviruses+hijack+the+SMARCB1-MYC+transcriptional+regulation+complex+to+activate+autophagy+for+persistent+viral+infection+in+leafhopper+vector&rft.jtitle=PLoS+pathogens&rft.au=Wang%2C+Hui&rft.au=Liu%2C+Runfa&rft.au=Xiao%2C+Guangming&rft.au=Li%2C+Yanan&rft.date=2025-10-01&rft.eissn=1553-7374&rft.volume=21&rft.issue=10&rft.spage=e1013569&rft_id=info:doi/10.1371%2Fjournal.ppat.1013569&rft_id=info%3Apmid%2F41066408&rft.externalDocID=41066408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon