Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm
•A multi-objective optimization algorithm is coupled into a 3D fluid-solid conjugated model.•Performance of a double-layered MCHS with semi-porous ribs is improved.•Underlying physics behind the overall performance improvement is explained.•Design criteria for better performance with preference info...
Saved in:
| Published in: | International journal of heat and mass transfer Vol. 149; p. 119217 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
01.03.2020
Elsevier BV |
| Subjects: | |
| ISSN: | 0017-9310, 1879-2189 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A multi-objective optimization algorithm is coupled into a 3D fluid-solid conjugated model.•Performance of a double-layered MCHS with semi-porous ribs is improved.•Underlying physics behind the overall performance improvement is explained.•Design criteria for better performance with preference information is proposed.
Thermal resistance and pumping power are two key metrics to evaluate the performance of microchannel heat sinks. To reach their better performance, porous medium can serve as an appropriate alternative to conventional solid rib due to its unique geometric architecture. In this work, the performance of a selected porous-ribs microchannel heat sink proposed previously is significantly improved through a 3D fluid-solid conjugated model coupled with a multi-objective and multi-parameter genetic algorithm optimization method. The optimal design and operation parameters are achieved under a constant volumetric flow rate. The Pareto-optimal front presents that the MCHS can reach a minimum thermal resistance of 0.06306 K/W with pumping power of 0.38317 W, and a minimum pumping power of 0.00171 W with thermal resistance of 0.37755 K/W. The optimization finds the optimal thermal resistance and pumping power are 0.09348 K/W and 0.02888 W, respectively. It shows that not only the cooling performance is significantly improved by 14.06%, but also the pumping power is considerably reduced by 16.40% when compared with the original design. Furthermore, the underlying physics of the effect of multi-parameter on the performance is analyzed. The results reveal that the compromise mediation between the pumping power of the upper channel and the cooling performance of the lower channel is responsible for reaching the optimal performance. Based on this mechanism, the design criteria to reach performance of preference are proposed. |
|---|---|
| AbstractList | Thermal resistance and pumping power are two key metrics to evaluate the performance of microchannel heat sinks. To reach their better performance, porous medium can serve as an appropriate alternative to conventional solid rib due to its unique geometric architecture. In this work, the performance of a selected porous-ribs microchannel heat sink proposed previously is significantly improved through a 3D fluid-solid conjugated model coupled with a multi-objective and multi-parameter genetic algorithm optimization method. The optimal design and operation parameters are achieved under a constant volumetric flow rate. The Pareto-optimal front presents that the MCHS can reach a minimum thermal resistance of 0.06306 K/W with pumping power of 0.38317 W, and a minimum pumping power of 0.00171 W with thermal resistance of 0.37755 K/W. The optimization finds the optimal thermal resistance and pumping power are 0.09348 K/W and 0.02888 W, respectively. It shows that not only the cooling performance is significantly improved by 14.06%, but also the pumping power is considerably reduced by 16.40% when compared with the original design. Furthermore, the underlying physics of the effect of multi-parameter on the performance is analyzed. The results reveal that the compromise mediation between the pumping power of the upper channel and the cooling performance of the lower channel is responsible for reaching the optimal performance. Based on this mechanism, the design criteria to reach performance of preference are proposed. •A multi-objective optimization algorithm is coupled into a 3D fluid-solid conjugated model.•Performance of a double-layered MCHS with semi-porous ribs is improved.•Underlying physics behind the overall performance improvement is explained.•Design criteria for better performance with preference information is proposed. Thermal resistance and pumping power are two key metrics to evaluate the performance of microchannel heat sinks. To reach their better performance, porous medium can serve as an appropriate alternative to conventional solid rib due to its unique geometric architecture. In this work, the performance of a selected porous-ribs microchannel heat sink proposed previously is significantly improved through a 3D fluid-solid conjugated model coupled with a multi-objective and multi-parameter genetic algorithm optimization method. The optimal design and operation parameters are achieved under a constant volumetric flow rate. The Pareto-optimal front presents that the MCHS can reach a minimum thermal resistance of 0.06306 K/W with pumping power of 0.38317 W, and a minimum pumping power of 0.00171 W with thermal resistance of 0.37755 K/W. The optimization finds the optimal thermal resistance and pumping power are 0.09348 K/W and 0.02888 W, respectively. It shows that not only the cooling performance is significantly improved by 14.06%, but also the pumping power is considerably reduced by 16.40% when compared with the original design. Furthermore, the underlying physics of the effect of multi-parameter on the performance is analyzed. The results reveal that the compromise mediation between the pumping power of the upper channel and the cooling performance of the lower channel is responsible for reaching the optimal performance. Based on this mechanism, the design criteria to reach performance of preference are proposed. |
| ArticleNumber | 119217 |
| Author | Wu, Hao-Chi Wang, Tian-Hu Meng, Jing-Hui Yan, Wei-Mon |
| Author_xml | – sequence: 1 givenname: Tian-Hu surname: Wang fullname: Wang, Tian-Hu organization: Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China – sequence: 2 givenname: Hao-Chi surname: Wu fullname: Wu, Hao-Chi organization: School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China – sequence: 3 givenname: Jing-Hui surname: Meng fullname: Meng, Jing-Hui email: jinghui818627@gmail.com organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China – sequence: 4 givenname: Wei-Mon surname: Yan fullname: Yan, Wei-Mon email: wmyan@ntut.edu.tw organization: Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan |
| BookMark | eNqVkE1vFDEMhiPUSmxb_kMkLlyyxJP5vIEqyocq9ULPUSbj6XqYSZYkU7T99WS7nOgFTpbl14_l54KdOe-QsXcgtyChfj9tadqhSYuJMQXj4ohhW0jotgBdAc0rtoG26UQBbXfGNlJCIzoF8jW7iHE6trKsNyzc7RMt9GQSecf9yA0f_NrPKGZzwIADX8gGb3fGOZz58SKP5H7wX5R2POJCYu-DX6MI1EfeH_iyzomE7ye0iR6RP6DDRJab-cGHvLRcsfPRzBHf_KmX7P7m0_frL-L27vPX64-3wqpGJtFCOfSmH7qmKAdV1bZq0AxVWeWBbIdOldipGlRrbQ-qkqMqoa1qMCPYRtaoLtnbE3cf_M8VY9KTX4PLJ3WhqlLJHJY5dXNK5S9jDDhqS-nZRrZKswapj771pF_61kff-uQ7gz78BdoHWkw4_A_i2wmBWcsj5Wm0hM7iQCHb1IOnf4f9Bk_7r9I |
| CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2021_117541 crossref_primary_10_1016_j_applthermaleng_2022_118755 crossref_primary_10_1016_j_applthermaleng_2022_118353 crossref_primary_10_1016_j_ijthermalsci_2022_107878 crossref_primary_10_3390_s21103356 crossref_primary_10_1016_j_applthermaleng_2021_117157 crossref_primary_10_1016_j_icheatmasstransfer_2021_105633 crossref_primary_10_1016_j_applthermaleng_2021_117154 crossref_primary_10_1007_s10973_022_11545_8 crossref_primary_10_1016_j_energy_2025_137265 crossref_primary_10_1016_j_icheatmasstransfer_2024_108137 crossref_primary_10_1016_j_icheatmasstransfer_2021_105360 crossref_primary_10_1016_j_applthermaleng_2023_121096 crossref_primary_10_1016_j_applthermaleng_2022_118457 crossref_primary_10_1108_HFF_02_2021_0104 crossref_primary_10_1016_j_applthermaleng_2022_118456 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124513 crossref_primary_10_1140_epjs_s11734_022_00454_4 crossref_primary_10_1063_5_0118700 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123063 crossref_primary_10_1016_j_energy_2024_131886 crossref_primary_10_1016_j_ces_2023_119081 crossref_primary_10_1080_15567036_2022_2095460 crossref_primary_10_1016_j_applthermaleng_2024_124652 crossref_primary_10_1016_j_ijthermalsci_2025_109879 crossref_primary_10_1016_j_ijmecsci_2020_105886 crossref_primary_10_1016_j_tsep_2023_101652 crossref_primary_10_1016_j_ijthermalsci_2024_108942 crossref_primary_10_2298_TSCI221219074S crossref_primary_10_3389_fenrg_2022_925053 crossref_primary_10_1007_s10973_023_12620_4 crossref_primary_10_1016_j_csite_2024_105028 crossref_primary_10_32604_cmes_2021_012839 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124638 crossref_primary_10_1016_j_applthermaleng_2023_120307 crossref_primary_10_1016_j_ijft_2025_101085 crossref_primary_10_1016_j_applthermaleng_2023_121994 crossref_primary_10_2298_TSCI220307121J crossref_primary_10_3390_e23111528 crossref_primary_10_3390_fluids7010007 crossref_primary_10_3390_mi13060918 crossref_primary_10_1016_j_applthermaleng_2021_117295 crossref_primary_10_1016_j_tsep_2024_102413 crossref_primary_10_1016_j_tsep_2023_102116 crossref_primary_10_1016_j_compchemeng_2023_108500 crossref_primary_10_1016_j_applthermaleng_2025_126441 crossref_primary_10_1002_apj_2858 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123634 crossref_primary_10_1016_j_icheatmasstransfer_2022_106574 crossref_primary_10_1088_2631_7990_ad2c5f crossref_primary_10_1016_j_ijheatmasstransfer_2023_124695 crossref_primary_10_1080_10407782_2025_2543582 crossref_primary_10_1016_j_applthermaleng_2024_122933 crossref_primary_10_1016_j_ast_2022_107933 crossref_primary_10_1080_01457632_2025_2459982 crossref_primary_10_1007_s10973_024_13616_4 crossref_primary_10_1016_j_applthermaleng_2024_123345 crossref_primary_10_1016_j_energy_2020_119223 crossref_primary_10_1016_j_icheatmasstransfer_2025_108689 crossref_primary_10_1080_10407790_2023_2296620 crossref_primary_10_1016_j_applthermaleng_2025_125880 crossref_primary_10_1016_j_apenergy_2022_119046 crossref_primary_10_1016_j_ijthermalsci_2020_106729 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124442 crossref_primary_10_1038_s41598_022_23061_8 crossref_primary_10_1016_j_seta_2021_101162 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125431 crossref_primary_10_1016_j_jwpe_2023_104502 crossref_primary_10_1080_10407790_2024_2338919 crossref_primary_10_1177_09544089221108275 crossref_primary_10_3390_en14206764 crossref_primary_10_1016_j_applthermaleng_2024_123574 crossref_primary_10_1016_j_applthermaleng_2024_123851 crossref_primary_10_1016_j_ijheatfluidflow_2024_109600 crossref_primary_10_1155_2022_2923661 crossref_primary_10_1016_j_applthermaleng_2022_119917 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121336 crossref_primary_10_1016_j_icheatmasstransfer_2024_107489 crossref_primary_10_1016_j_applthermaleng_2021_116829 crossref_primary_10_1016_j_applthermaleng_2023_121294 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121459 crossref_primary_10_1007_s13369_023_08149_1 crossref_primary_10_1016_j_ces_2024_120556 crossref_primary_10_1016_j_icheatmasstransfer_2025_109593 crossref_primary_10_1002_htj_22990 crossref_primary_10_1016_j_ijthermalsci_2021_106961 crossref_primary_10_1016_j_chaos_2020_109883 crossref_primary_10_1016_j_csite_2025_106714 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120634 crossref_primary_10_1016_j_applthermaleng_2022_118127 crossref_primary_10_1016_j_apm_2021_12_008 crossref_primary_10_1016_j_icheatmasstransfer_2024_108106 crossref_primary_10_1016_j_applthermaleng_2025_125718 crossref_primary_10_1016_j_applthermaleng_2024_122386 crossref_primary_10_1016_j_tca_2020_178803 crossref_primary_10_1016_j_applthermaleng_2025_127297 crossref_primary_10_1016_j_tsep_2022_101203 crossref_primary_10_1016_j_icheatmasstransfer_2021_105261 crossref_primary_10_1016_j_icheatmasstransfer_2024_108231 |
| Cites_doi | 10.1016/j.enconman.2013.10.063 10.1016/j.ijheatmasstransfer.2015.10.023 10.3390/en12142832 10.1016/j.energy.2011.11.043 10.1016/j.ijheatmasstransfer.2019.02.029 10.1016/j.ijheatfluidflow.2005.08.005 10.1016/j.ijheatmasstransfer.2018.11.040 10.1016/0377-2217(94)90282-8 10.1016/j.rser.2017.09.110 10.1016/j.ijthermalsci.2016.06.007 10.1016/j.icheatmasstransfer.2016.04.024 10.1016/j.applthermaleng.2017.04.058 10.1016/j.icheatmasstransfer.2018.03.023 10.1017/jfm.2019.491 10.1109/4235.996017 10.1016/j.ijthermalsci.2018.04.035 10.1016/0017-9310(94)90103-1 10.1016/j.solener.2018.06.083 10.1016/j.icheatmasstransfer.2010.06.014 10.1016/j.ijheatmasstransfer.2017.10.015 10.1016/j.icheatmasstransfer.2018.03.003 10.1016/j.ijheatmasstransfer.2014.06.072 10.1016/j.ijheatmasstransfer.2019.04.032 10.1016/j.ijheatmasstransfer.2015.10.043 10.1016/j.ijheatmasstransfer.2019.04.039 10.1016/j.ijthermalsci.2010.05.016 10.1016/j.apenergy.2019.03.071 10.1115/1.4005126 10.1016/j.ijheatmasstransfer.2010.02.022 10.1016/j.ijheatmasstransfer.2019.118772 10.1016/j.icheatmasstransfer.2015.04.005 10.1016/j.applthermaleng.2018.11.038 10.1016/j.applthermaleng.2019.114298 10.1016/j.applthermaleng.2019.01.051 10.1016/j.ijheatmasstransfer.2014.10.022 10.1016/j.ijheatmasstransfer.2019.118518 10.1016/j.enconman.2019.02.010 10.1016/j.ijheatmasstransfer.2016.05.118 10.1016/j.ijheatmasstransfer.2011.01.029 10.1109/EDL.1981.25367 10.1016/j.ijthermalsci.2014.06.013 10.1016/j.enconman.2015.12.006 10.1016/j.ijheatmasstransfer.2015.01.040 10.1016/j.icheatmasstransfer.2019.03.009 10.1016/j.ijthermalsci.2018.12.029 10.1016/j.ijthermalsci.2019.04.032 10.1016/j.ijhydene.2015.04.144 10.1016/j.applthermaleng.2016.08.193 10.1016/j.applthermaleng.2018.03.065 |
| ContentType | Journal Article |
| Copyright | 2019 Copyright Elsevier BV Mar 2020 |
| Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Mar 2020 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2019.119217 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2019_119217 S0017931019349476 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 H8D KR7 L7M SSH |
| ID | FETCH-LOGICAL-c370t-814dbabd9724d356c57ead54581408d934e936138ccb1350f3418561af1c706e3 |
| ISICitedReferencesCount | 119 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538009600085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Fri Jul 25 03:56:01 EDT 2025 Sat Nov 29 07:31:12 EST 2025 Tue Nov 18 22:14:36 EST 2025 Fri Feb 23 02:48:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Numerical modeling Porous rib NSGA-II Microchannel heat sink Thermal resistance Multi-objective optimization Pumping power |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-814dbabd9724d356c57ead54581408d934e936138ccb1350f3418561af1c706e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2354305610 |
| PQPubID | 2045464 |
| ParticipantIDs | proquest_journals_2354305610 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2019_119217 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119217 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_119217 |
| PublicationCentury | 2000 |
| PublicationDate | March 2020 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Ho, Chang, Yan, Amani (bib0020) 2018; 94 Zehforoosh, Hossainpour (bib0045) 2010; 49 Deb, Member, Pratap, Agarwal, Meyarivan (bib0046) 2002; 6 Shen, Jin, Zhang, Xie, Sunden, Yan (bib0032) 2017; 121 Deng, Menon, Lavrich, Wang, Hagen (bib0008) 2017; 110 Yang, Ye, Li, Zhu, Liao, Zhang (bib0007) 2015; 40 Ghahremannezhad, Xu, Nazari, Ahmadi, Vafai (bib0041) 2019; 131 Drummond, Back, Sinanis, Janes, Peroulis, Weibel, Garimella (bib0011) 2018; 117 Leng, Wang, Yan, Wang (bib0017) 2016; 110 Pourfattah, Arani, Babaie, Nguyen, Asadi (bib0013) 2019; 143 Wang, Li, Wang, Lu (bib0039) 2018; 93 Chamoli, Lu, Chen, Cheng, Yu (bib0034) 2019; 138 Ho, Chang, Yan, Amani (bib0019) 2018; 130 Rezania, Rosendahl (bib0006) 2012; 37 Moradikazerouni, Afrand, Alsarraf, Mahian, Wongwises, Tran (bib0030) 2019; 150 Bayomy, Saghir, Yousefi (bib0044) 2016; 109 Ge, Liu, Liu (bib0022) 2016; 101 Kandlikar (bib0001) 2012; 134 Lai, Liu, Hwang (bib0047) 1994; 76 Hadavand, Yousefzadeh, Akbari, Pourfattah, Nguyen, Asadi (bib0014) 2019; 162 Bazdar, Toghraie, Pourfattah, Akbari, Nguyen, Asadi (bib0025) 2019 Li, Wang, Wang, Wang (bib0042) 2019; 137 Bowers, Mudawar (bib0049) 1994; 37 Wang, Wang, Yan, Duan, Lee, Xu (bib0043) 2011; 54 Moradikazerouni, Afrand, Alsarraf, Wongwises, Asadi, Nguyen (bib0035) 2019; 134 Naqiuddin, Saw, Yew, Yusof, Ng, Yew (bib0004) 2018; 82 Gunnasegaran, Mohammed, Shuaib, Saidur (bib0028) 2010; 37 Tuckerman, Pease (bib0005) 1981; 2 Yadav, Baghel, Kumar, Kadam (bib0036) 2016; 93 Zargartalebi1, Azaiez (bib0023) 2019; 875 Leng, Wang, Wang, Yan (bib0031) 2015; 84 Kuppusamy, Saidur, Ghazali, Mohammed (bib0037) 2014; 78 Jung, Boo (bib0018) 2019; 145 Gong, Li, Bai, Xu (bib0040) 2018; 137 Kadam, Kumar (bib0002) 2014; 85 Arie, Shooshtari, Dessiatoun, Al-Hajri, Ohadi (bib0027) 2015; 81 Hatami, Ganji (bib0012) 2014; 78 Radwan, Ahmed (bib0009) 2018; 171 Lu, Vafai (bib0003) 2016; 76 Lin, Mo, Jia, Yang, Chen, Cheng (bib0010) 2019; 242 Liu, Shao, Chen, Xie (bib0016) 2019; 144 Ge, Wang, Liu, Liu (bib0029) 2019; 148 Hetsroni, Gurevich, Rozenblit (bib0021) 2006; 27 Zhang, Yang, Zhou, Rao, Gao, Ding, Shu, Liu (bib0015) 2019; 185 Paniagua-Guerra, Sehgal, Gonzalez-Valle, Ramos-Alvarado (bib0026) 2019; 138 Meng, Wu, Wang (bib0048) 2019; 12 Sui, Teo, Lee, Chew, Shu (bib0024) 2010; 53 Peng, Wang, Wang (bib0050) 2016; 93 Shi, Li, Mu, Yin (bib0033) 2019; 104 Leng, Wang, Wang, Yan (bib0038) 2015; 65 Zehforoosh (10.1016/j.ijheatmasstransfer.2019.119217_bib0045) 2010; 49 Ho (10.1016/j.ijheatmasstransfer.2019.119217_bib0019) 2018; 130 Moradikazerouni (10.1016/j.ijheatmasstransfer.2019.119217_bib0035) 2019; 134 Gong (10.1016/j.ijheatmasstransfer.2019.119217_bib0040) 2018; 137 Leng (10.1016/j.ijheatmasstransfer.2019.119217_bib0017) 2016; 110 Ghahremannezhad (10.1016/j.ijheatmasstransfer.2019.119217_bib0041) 2019; 131 Bayomy (10.1016/j.ijheatmasstransfer.2019.119217_bib0044) 2016; 109 Hetsroni (10.1016/j.ijheatmasstransfer.2019.119217_bib0021) 2006; 27 Wang (10.1016/j.ijheatmasstransfer.2019.119217_bib0043) 2011; 54 Leng (10.1016/j.ijheatmasstransfer.2019.119217_bib0031) 2015; 84 Yadav (10.1016/j.ijheatmasstransfer.2019.119217_bib0036) 2016; 93 Wang (10.1016/j.ijheatmasstransfer.2019.119217_bib0039) 2018; 93 Kuppusamy (10.1016/j.ijheatmasstransfer.2019.119217_bib0037) 2014; 78 Arie (10.1016/j.ijheatmasstransfer.2019.119217_bib0027) 2015; 81 Kadam (10.1016/j.ijheatmasstransfer.2019.119217_bib0002) 2014; 85 Li (10.1016/j.ijheatmasstransfer.2019.119217_bib0042) 2019; 137 Lin (10.1016/j.ijheatmasstransfer.2019.119217_bib0010) 2019; 242 Ge (10.1016/j.ijheatmasstransfer.2019.119217_bib0029) 2019; 148 Leng (10.1016/j.ijheatmasstransfer.2019.119217_bib0038) 2015; 65 Bowers (10.1016/j.ijheatmasstransfer.2019.119217_bib0049) 1994; 37 Pourfattah (10.1016/j.ijheatmasstransfer.2019.119217_bib0013) 2019; 143 Paniagua-Guerra (10.1016/j.ijheatmasstransfer.2019.119217_bib0026) 2019; 138 Lai (10.1016/j.ijheatmasstransfer.2019.119217_bib0047) 1994; 76 Ge (10.1016/j.ijheatmasstransfer.2019.119217_bib0022) 2016; 101 Lu (10.1016/j.ijheatmasstransfer.2019.119217_bib0003) 2016; 76 Drummond (10.1016/j.ijheatmasstransfer.2019.119217_bib0011) 2018; 117 Shi (10.1016/j.ijheatmasstransfer.2019.119217_bib0033) 2019; 104 Yang (10.1016/j.ijheatmasstransfer.2019.119217_bib0007) 2015; 40 Hatami (10.1016/j.ijheatmasstransfer.2019.119217_bib0012) 2014; 78 Hadavand (10.1016/j.ijheatmasstransfer.2019.119217_bib0014) 2019; 162 Kandlikar (10.1016/j.ijheatmasstransfer.2019.119217_bib0001) 2012; 134 Tuckerman (10.1016/j.ijheatmasstransfer.2019.119217_bib0005) 1981; 2 Rezania (10.1016/j.ijheatmasstransfer.2019.119217_bib0006) 2012; 37 Radwan (10.1016/j.ijheatmasstransfer.2019.119217_bib0009) 2018; 171 Zargartalebi1 (10.1016/j.ijheatmasstransfer.2019.119217_bib0023) 2019; 875 Meng (10.1016/j.ijheatmasstransfer.2019.119217_bib0048) 2019; 12 Deb (10.1016/j.ijheatmasstransfer.2019.119217_bib0046) 2002; 6 Chamoli (10.1016/j.ijheatmasstransfer.2019.119217_bib0034) 2019; 138 Shen (10.1016/j.ijheatmasstransfer.2019.119217_bib0032) 2017; 121 Bazdar (10.1016/j.ijheatmasstransfer.2019.119217_bib0025) 2019 Deng (10.1016/j.ijheatmasstransfer.2019.119217_bib0008) 2017; 110 Sui (10.1016/j.ijheatmasstransfer.2019.119217_bib0024) 2010; 53 Zhang (10.1016/j.ijheatmasstransfer.2019.119217_bib0015) 2019; 185 Moradikazerouni (10.1016/j.ijheatmasstransfer.2019.119217_bib0030) 2019; 150 Ho (10.1016/j.ijheatmasstransfer.2019.119217_bib0020) 2018; 94 Peng (10.1016/j.ijheatmasstransfer.2019.119217_bib0050) 2016; 93 Naqiuddin (10.1016/j.ijheatmasstransfer.2019.119217_bib0004) 2018; 82 Gunnasegaran (10.1016/j.ijheatmasstransfer.2019.119217_bib0028) 2010; 37 Jung (10.1016/j.ijheatmasstransfer.2019.119217_bib0018) 2019; 145 Liu (10.1016/j.ijheatmasstransfer.2019.119217_bib0016) 2019; 144 |
| References_xml | – volume: 162 start-page: 114 year: 2019 end-page: 298 ident: bib0014 article-title: A numerical investigation on the effects of mixed convection of Ag-water nanofluid inside a sim-circular lid-driven cavity on the temperature of an electronic silicon chip publication-title: Appl. Therm. Eng. – volume: 93 start-page: 1072 year: 2016 end-page: 1081 ident: bib0050 article-title: Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel publication-title: Int. J. Heat Mass Transf. – volume: 82 start-page: 901 year: 2018 end-page: 914 ident: bib0004 article-title: Overview of micro-channel design for high heat flux application publication-title: Renew. Sustain. Energy Rev. – volume: 110 start-page: 154 year: 2016 end-page: 164 ident: bib0017 article-title: Heat transfer enhancement of microchannel heat sink using transcritical carbon dioxide as the coolant publication-title: Energy Conv. Manag. – volume: 53 start-page: 2760 year: 2010 end-page: 2772 ident: bib0024 article-title: Fluid flow and heat transfer in wavy microchannels publication-title: Int. J. Heat Mass Transf. – volume: 76 start-page: 486 year: 1994 end-page: 500 ident: bib0047 article-title: TOPSIS for MODM publication-title: Eur. J. Oper. Res. – volume: 93 start-page: 41 year: 2018 end-page: 47 ident: bib0039 article-title: Flow and heat transfer characteristics in double-layered microchannel heat sinks with porous fins publication-title: Int. Commun. Heat Mass Transf. – volume: 150 start-page: 1078 year: 2019 end-page: 1089 ident: bib0030 article-title: Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board publication-title: Appl. Therm. Eng. – volume: 875 start-page: 1035 year: 2019 end-page: 1057 ident: bib0023 article-title: Flow dynamics and heat transfer in partially porous microchannel heat sinks publication-title: J. Fluid Mech. – volume: 49 start-page: 1649 year: 2010 end-page: 1662 ident: bib0045 article-title: Numerical investigation of pressure drop reduction without surrendering heat transfer enhancement in partially porous channel publication-title: Int. J. Therm. Sci. – volume: 93 start-page: 612 year: 2016 end-page: 622 ident: bib0036 article-title: Numerical investigation of heat transfer in extended surface microchannels publication-title: Int. J. Heat Mass Transf. – volume: 101 start-page: 981 year: 2016 end-page: 987 ident: bib0022 article-title: Multi-objective genetic optimization of the heat transfer for tube inserted with porous media publication-title: Int. J. Heat Mass Transf. – volume: 109 start-page: 182 year: 2016 end-page: 200 ident: bib0044 article-title: Electronic cooling using water flow in aluminum metal foam heat sink: experimental and numerical approach publication-title: Int. J. Therm. Sci. – volume: 94 start-page: 96 year: 2018 end-page: 105 ident: bib0020 article-title: Comparative study on thermal performance of MEPCM suspensions in parallel and divergent minichannel heat sinks publication-title: Int. Commun. Heat Mass Transf. – volume: 138 start-page: 373 year: 2019 end-page: 389 ident: bib0034 article-title: Numerical optimization of design parameters for a modified double-layer microchannel heat sink publication-title: Int. J. Heat Mass Transf. – volume: 121 start-page: 180 year: 2017 end-page: 189 ident: bib0032 article-title: Computational optimization of counter-flow double-layered microchannel heat sinks subjected to thermal resistance and pumping power publication-title: Appl. Therm. Eng. – volume: 137 start-page: 616 year: 2019 end-page: 626 ident: bib0042 article-title: Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks publication-title: Int. J. Therm. Sci. – volume: 138 start-page: 257 year: 2019 end-page: 266 ident: bib0026 article-title: Fractal channel manifolds for microjet liquid-cooled heat sinks publication-title: Int. J. Heat Mass Transf. – volume: 171 start-page: 229 year: 2018 end-page: 246 ident: bib0009 article-title: Thermal management of concentrator photovoltaic systems using microchannel heat sink with nanofluids publication-title: Solar Energy – volume: 131 start-page: 52 year: 2019 end-page: 63 ident: bib0041 article-title: Effect of porous substrates on thermohydraulic performance enhancement of double layer microchannel heat sinks publication-title: Int. J. Heat Mass Transf. – volume: 2 start-page: 126 year: 1981 end-page: 129 ident: bib0005 article-title: High-performance heat sinking for VLSI publication-title: IEEE Electron. Device Lett. – volume: 143 start-page: 118 year: 2019 end-page: 518 ident: bib0013 article-title: On the thermal characteristics of a manifold microchannel heat sink subjected to nanofluid using two-phase flow simulation publication-title: Int. J. Heat Mass Transf. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0046 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 134 year: 2012 ident: bib0001 article-title: History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review publication-title: J. Heat Transf. – volume: 40 start-page: 11983 year: 2015 end-page: 11988 ident: bib0007 article-title: Biofilm distribution and performance of microfluidic microbial fuel cells with different microchannel geometries publication-title: Int. J. Hydrog. Energy – volume: 148 start-page: 120 year: 2019 end-page: 128 ident: bib0029 article-title: Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method publication-title: Appl. Therm. Eng. – volume: 27 start-page: 259 year: 2006 end-page: 266 ident: bib0021 article-title: Sintered porous medium heat sink for cooling of high-power mini-devices publication-title: Int. J. Heat Fluid Flow – start-page: 1 year: 2019 end-page: 16 ident: bib0025 article-title: Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths publication-title: J. Therm. Anal. Calorim. – volume: 134 start-page: 1218 year: 2019 end-page: 1226 ident: bib0035 article-title: Investigation of a computer CPU heat sink under laminar forced convection using a structural stability method publication-title: Int. J. Heat Mass Transf. – volume: 242 start-page: 232 year: 2019 end-page: 238 ident: bib0010 article-title: Experimental study and Taguchi analysis on LED cooling by thermoelectric cooler integrated with microchannel heat sink publication-title: Appl. Energy – volume: 130 start-page: 333 year: 2018 end-page: 346 ident: bib0019 article-title: Efficacy of divergent minichannels on cooling performance of heat sinks with water-based MEPCM suspensions publication-title: Int. J. Therm. Sci. – volume: 12 start-page: 2832 year: 2019 ident: bib0048 article-title: Optimization of two-stage combined thermoelectric devices by a three-dimensional multi-physics model and multi-objective genetic algorithm publication-title: Energies – volume: 78 start-page: 216 year: 2014 end-page: 223 ident: bib0037 article-title: Numerical study of thermal enhancement in micro channel heat sink with secondary flow publication-title: Int. J. Heat Mass Transf. – volume: 137 start-page: 288 year: 2018 end-page: 295 ident: bib0040 article-title: Thermal performance of micro-channel heat sink with metallic porous/solid compound fin design publication-title: Appl. Therm. Eng. – volume: 117 start-page: 319 year: 2018 end-page: 330 ident: bib0011 article-title: A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics publication-title: Int. J. Heat Mass Transf. – volume: 104 start-page: 89 year: 2019 end-page: 100 ident: bib0033 article-title: Geometry parameters optimization for a microchannel heat sink with secondary flow channel publication-title: Int. Commun. Heat Mass Transf. – volume: 76 start-page: 271 year: 2016 end-page: 284 ident: bib0003 article-title: A comparative analysis of innovative microchannel heat sinks for electronic cooling publication-title: Int. Commun. Heat Mass Transf. – volume: 65 start-page: 52 year: 2015 end-page: 57 ident: bib0038 article-title: Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept publication-title: Int. Commun. Heat Mass Transf. – volume: 144 start-page: 129 year: 2019 end-page: 146 ident: bib0016 article-title: Heat transfer and flow performance of a novel T type heat sink with GaInSn Coolant publication-title: Int. J. Therm. Sci. – volume: 54 start-page: 2811 year: 2011 end-page: 2819 ident: bib0043 article-title: Multi-parameters optimization for microchannel heat sink using inverse problem method publication-title: Int. J. Heat Mass Transf. – volume: 78 start-page: 347 year: 2014 end-page: 358 ident: bib0012 article-title: Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method publication-title: Energy Conv. Manag. – volume: 84 start-page: 359 year: 2015 end-page: 369 ident: bib0031 article-title: Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink publication-title: Int. J. Heat Mass Transf. – volume: 37 start-page: 1078 year: 2010 end-page: 1086 ident: bib0028 article-title: The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes publication-title: Int. Commun. Heat Mass Transf. – volume: 145 year: 2019 ident: bib0018 article-title: A novel transient thermohydraulic model of micro-channel heat sink publication-title: Int. J. Heat Mass Transf. – volume: 37 start-page: 321 year: 1994 end-page: 332 ident: bib0049 article-title: High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. – volume: 81 start-page: 478 year: 2015 end-page: 489 ident: bib0027 article-title: Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger publication-title: Int. J. Heat Mass Transf. – volume: 110 start-page: 327 year: 2017 end-page: 334 ident: bib0008 article-title: Design, simulation, and testing of a novel micro-channel heat exchanger for natural gas cooling in automotive applications publication-title: Appl. Therm. Eng. – volume: 85 start-page: 73 year: 2014 end-page: 92 ident: bib0002 article-title: Twenty first century cooling solution: microchannel heat sinks publication-title: Int. J. Therm. Sci. – volume: 185 start-page: 248 year: 2019 end-page: 258 ident: bib0015 article-title: Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management publication-title: Energy Conv. Manag. – volume: 37 start-page: 220 year: 2012 end-page: 227 ident: bib0006 article-title: Thermal effect of a thermoelectric generator on parallel microchannel heat sink publication-title: Energy – volume: 78 start-page: 347 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0012 article-title: Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method publication-title: Energy Conv. Manag. doi: 10.1016/j.enconman.2013.10.063 – volume: 93 start-page: 612 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0036 article-title: Numerical investigation of heat transfer in extended surface microchannels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.10.023 – volume: 12 start-page: 2832 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0048 article-title: Optimization of two-stage combined thermoelectric devices by a three-dimensional multi-physics model and multi-objective genetic algorithm publication-title: Energies doi: 10.3390/en12142832 – volume: 37 start-page: 220 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0006 article-title: Thermal effect of a thermoelectric generator on parallel microchannel heat sink publication-title: Energy doi: 10.1016/j.energy.2011.11.043 – volume: 134 start-page: 1218 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0035 article-title: Investigation of a computer CPU heat sink under laminar forced convection using a structural stability method publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.02.029 – volume: 27 start-page: 259 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0021 article-title: Sintered porous medium heat sink for cooling of high-power mini-devices publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2005.08.005 – volume: 131 start-page: 52 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0041 article-title: Effect of porous substrates on thermohydraulic performance enhancement of double layer microchannel heat sinks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.11.040 – volume: 76 start-page: 486 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0047 article-title: TOPSIS for MODM publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(94)90282-8 – volume: 82 start-page: 901 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0004 article-title: Overview of micro-channel design for high heat flux application publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.110 – volume: 109 start-page: 182 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0044 article-title: Electronic cooling using water flow in aluminum metal foam heat sink: experimental and numerical approach publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.06.007 – volume: 76 start-page: 271 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0003 article-title: A comparative analysis of innovative microchannel heat sinks for electronic cooling publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2016.04.024 – volume: 121 start-page: 180 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0032 article-title: Computational optimization of counter-flow double-layered microchannel heat sinks subjected to thermal resistance and pumping power publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.04.058 – volume: 94 start-page: 96 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0020 article-title: Comparative study on thermal performance of MEPCM suspensions in parallel and divergent minichannel heat sinks publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2018.03.023 – volume: 875 start-page: 1035 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0023 article-title: Flow dynamics and heat transfer in partially porous microchannel heat sinks publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.491 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0046 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 130 start-page: 333 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0019 article-title: Efficacy of divergent minichannels on cooling performance of heat sinks with water-based MEPCM suspensions publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.04.035 – volume: 37 start-page: 321 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0049 article-title: High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(94)90103-1 – volume: 171 start-page: 229 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0009 article-title: Thermal management of concentrator photovoltaic systems using microchannel heat sink with nanofluids publication-title: Solar Energy doi: 10.1016/j.solener.2018.06.083 – volume: 37 start-page: 1078 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0028 article-title: The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2010.06.014 – volume: 117 start-page: 319 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0011 article-title: A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.10.015 – volume: 93 start-page: 41 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0039 article-title: Flow and heat transfer characteristics in double-layered microchannel heat sinks with porous fins publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2018.03.003 – volume: 78 start-page: 216 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0037 article-title: Numerical study of thermal enhancement in micro channel heat sink with secondary flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.06.072 – volume: 138 start-page: 373 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0034 article-title: Numerical optimization of design parameters for a modified double-layer microchannel heat sink publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.04.032 – volume: 93 start-page: 1072 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0050 article-title: Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.10.043 – volume: 138 start-page: 257 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0026 article-title: Fractal channel manifolds for microjet liquid-cooled heat sinks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.04.039 – volume: 49 start-page: 1649 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0045 article-title: Numerical investigation of pressure drop reduction without surrendering heat transfer enhancement in partially porous channel publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2010.05.016 – volume: 242 start-page: 232 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0010 article-title: Experimental study and Taguchi analysis on LED cooling by thermoelectric cooler integrated with microchannel heat sink publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.071 – volume: 134 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0001 article-title: History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review publication-title: J. Heat Transf. doi: 10.1115/1.4005126 – volume: 53 start-page: 2760 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0024 article-title: Fluid flow and heat transfer in wavy microchannels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.02.022 – volume: 145 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0018 article-title: A novel transient thermohydraulic model of micro-channel heat sink publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118772 – volume: 65 start-page: 52 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0038 article-title: Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2015.04.005 – volume: 148 start-page: 120 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0029 article-title: Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.11.038 – volume: 162 start-page: 114 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0014 article-title: A numerical investigation on the effects of mixed convection of Ag-water nanofluid inside a sim-circular lid-driven cavity on the temperature of an electronic silicon chip publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114298 – volume: 150 start-page: 1078 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0030 article-title: Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.01.051 – volume: 81 start-page: 478 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0027 article-title: Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.10.022 – volume: 143 start-page: 118 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0013 article-title: On the thermal characteristics of a manifold microchannel heat sink subjected to nanofluid using two-phase flow simulation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118518 – volume: 185 start-page: 248 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0015 article-title: Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management publication-title: Energy Conv. Manag. doi: 10.1016/j.enconman.2019.02.010 – volume: 101 start-page: 981 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0022 article-title: Multi-objective genetic optimization of the heat transfer for tube inserted with porous media publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.05.118 – volume: 54 start-page: 2811 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0043 article-title: Multi-parameters optimization for microchannel heat sink using inverse problem method publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.01.029 – volume: 2 start-page: 126 year: 1981 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0005 article-title: High-performance heat sinking for VLSI publication-title: IEEE Electron. Device Lett. doi: 10.1109/EDL.1981.25367 – volume: 85 start-page: 73 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0002 article-title: Twenty first century cooling solution: microchannel heat sinks publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2014.06.013 – volume: 110 start-page: 154 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0017 article-title: Heat transfer enhancement of microchannel heat sink using transcritical carbon dioxide as the coolant publication-title: Energy Conv. Manag. doi: 10.1016/j.enconman.2015.12.006 – volume: 84 start-page: 359 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0031 article-title: Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.01.040 – volume: 104 start-page: 89 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0033 article-title: Geometry parameters optimization for a microchannel heat sink with secondary flow channel publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2019.03.009 – volume: 137 start-page: 616 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0042 article-title: Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.12.029 – volume: 144 start-page: 129 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0016 article-title: Heat transfer and flow performance of a novel T type heat sink with GaInSn Coolant publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2019.04.032 – volume: 40 start-page: 11983 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0007 article-title: Biofilm distribution and performance of microfluidic microbial fuel cells with different microchannel geometries publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.04.144 – volume: 110 start-page: 327 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0008 article-title: Design, simulation, and testing of a novel micro-channel heat exchanger for natural gas cooling in automotive applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.08.193 – start-page: 1 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0025 article-title: Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths publication-title: J. Therm. Anal. Calorim. – volume: 137 start-page: 288 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0040 article-title: Thermal performance of micro-channel heat sink with metallic porous/solid compound fin design publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.03.065 |
| SSID | ssj0017046 |
| Score | 2.607159 |
| Snippet | •A multi-objective optimization algorithm is coupled into a 3D fluid-solid conjugated model.•Performance of a double-layered MCHS with semi-porous ribs is... Thermal resistance and pumping power are two key metrics to evaluate the performance of microchannel heat sinks. To reach their better performance, porous... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119217 |
| SubjectTerms | Cooling Design optimization Design parameters Flow velocity Genetic algorithms Heat sinks Heat transfer Microchannel heat sink Microchannels Multi-objective optimization Multiple objective analysis NSGA-II Numerical modeling Optimization Performance evaluation Porous media Porous rib Pumping Pumping power Thermal energy Thermal resistance Three dimensional models |
| Title | Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.119217 https://www.proquest.com/docview/2354305610 |
| Volume | 149 |
| WOSCitedRecordID | wos000538009600085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKB4gL4lMMBvIBIaTJKImbOD6hqeo0UOk4dFBOURw7I1WblKadtj-P_4zn2MnSAhM9cIkiN3Hivl-ef35-Hwi95soVqfIDkkrPJ73YDQj3hSSxC9yWBQxIaRUoPGSjUTiZ8M-dzs86FuZixvI8vLzki_8qamgDYevQ2R3E3XQKDXAOQocjiB2O_yT4U1ACcxtdaaIfZbEWM0Vm8ZUuzHk41z54OuA3V1Uc5OqwhAWpdVZX84wAJS_WJVlmotTstPI5JIWYGt2oiy6rKs3r7LxYwk3zNsHdtDC28lJUD9JW-jnQdV2ZAvhyyzPYmq3HgFZysm6a19XUGBek_z1rsKGsFzHMunBt0_7N2HK_qox8smCz5gxYuzb-XMbG1sTZfGmrbZhKObX-r8po6pBxAvyEb6hyk_7UKmP3j1OEsVZM32VTPXA95nrI2tGPwxzCPRNOupmde3QaHZ8Nh9F4MBm_WfwgunCZ3uC3VVxuoT2P-Tzsor2jD4PJx2YrC-Ae1HRAj-EuenvtZHjzS_yNK22xhooKjR-g-3YNg48M9h6ijsofoTuVL3FSPkbLNgJxkeIYbyIQtxGI9athjUCsEYi3EYjFFd5CILYIxA0Cn6Cz48G4f0JsaQ-SUOastOFZilhIzryepH6Q-AxUmt7EhQV_KDntKU6BaYZJIlzqOynVSZYCN07dhDmBok9RNy9y9Qxhn0onkFwqlgK1d1zhU-Z6QiRuElBPxvvoff0nRonNe6_Lr8yi2sFxGv0uhkiLITJi2Ee86WFhcsDscG-_lltkOa3hqhHgcYdeDmqRR_bLLSOP-r3KAOA8v_nnF-je9Zd2gLqr5Vq9RLeTi1VWLl9ZvP4CuTfYYg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+a+double-layered+microchannel+heat+sink+with+semi-porous-ribs+by+multi-objective+genetic+algorithm&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Wang%2C+Tian-Hu&rft.au=Wu%2C+Hao-Chi&rft.au=Meng%2C+Jing-Hui&rft.au=Yan%2C+Wei-Mon&rft.date=2020-03-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=149&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.119217&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |