Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm

•A multi-objective optimization algorithm is coupled into a 3D fluid-solid conjugated model.•Performance of a double-layered MCHS with semi-porous ribs is improved.•Underlying physics behind the overall performance improvement is explained.•Design criteria for better performance with preference info...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer Vol. 149; p. 119217
Main Authors: Wang, Tian-Hu, Wu, Hao-Chi, Meng, Jing-Hui, Yan, Wei-Mon
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.03.2020
Elsevier BV
Subjects:
ISSN:0017-9310, 1879-2189
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A multi-objective optimization algorithm is coupled into a 3D fluid-solid conjugated model.•Performance of a double-layered MCHS with semi-porous ribs is improved.•Underlying physics behind the overall performance improvement is explained.•Design criteria for better performance with preference information is proposed. Thermal resistance and pumping power are two key metrics to evaluate the performance of microchannel heat sinks. To reach their better performance, porous medium can serve as an appropriate alternative to conventional solid rib due to its unique geometric architecture. In this work, the performance of a selected porous-ribs microchannel heat sink proposed previously is significantly improved through a 3D fluid-solid conjugated model coupled with a multi-objective and multi-parameter genetic algorithm optimization method. The optimal design and operation parameters are achieved under a constant volumetric flow rate. The Pareto-optimal front presents that the MCHS can reach a minimum thermal resistance of 0.06306 K/W with pumping power of 0.38317 W, and a minimum pumping power of 0.00171 W with thermal resistance of 0.37755 K/W. The optimization finds the optimal thermal resistance and pumping power are 0.09348 K/W and 0.02888 W, respectively. It shows that not only the cooling performance is significantly improved by 14.06%, but also the pumping power is considerably reduced by 16.40% when compared with the original design. Furthermore, the underlying physics of the effect of multi-parameter on the performance is analyzed. The results reveal that the compromise mediation between the pumping power of the upper channel and the cooling performance of the lower channel is responsible for reaching the optimal performance. Based on this mechanism, the design criteria to reach performance of preference are proposed.
AbstractList Thermal resistance and pumping power are two key metrics to evaluate the performance of microchannel heat sinks. To reach their better performance, porous medium can serve as an appropriate alternative to conventional solid rib due to its unique geometric architecture. In this work, the performance of a selected porous-ribs microchannel heat sink proposed previously is significantly improved through a 3D fluid-solid conjugated model coupled with a multi-objective and multi-parameter genetic algorithm optimization method. The optimal design and operation parameters are achieved under a constant volumetric flow rate. The Pareto-optimal front presents that the MCHS can reach a minimum thermal resistance of 0.06306 K/W with pumping power of 0.38317 W, and a minimum pumping power of 0.00171 W with thermal resistance of 0.37755 K/W. The optimization finds the optimal thermal resistance and pumping power are 0.09348 K/W and 0.02888 W, respectively. It shows that not only the cooling performance is significantly improved by 14.06%, but also the pumping power is considerably reduced by 16.40% when compared with the original design. Furthermore, the underlying physics of the effect of multi-parameter on the performance is analyzed. The results reveal that the compromise mediation between the pumping power of the upper channel and the cooling performance of the lower channel is responsible for reaching the optimal performance. Based on this mechanism, the design criteria to reach performance of preference are proposed.
•A multi-objective optimization algorithm is coupled into a 3D fluid-solid conjugated model.•Performance of a double-layered MCHS with semi-porous ribs is improved.•Underlying physics behind the overall performance improvement is explained.•Design criteria for better performance with preference information is proposed. Thermal resistance and pumping power are two key metrics to evaluate the performance of microchannel heat sinks. To reach their better performance, porous medium can serve as an appropriate alternative to conventional solid rib due to its unique geometric architecture. In this work, the performance of a selected porous-ribs microchannel heat sink proposed previously is significantly improved through a 3D fluid-solid conjugated model coupled with a multi-objective and multi-parameter genetic algorithm optimization method. The optimal design and operation parameters are achieved under a constant volumetric flow rate. The Pareto-optimal front presents that the MCHS can reach a minimum thermal resistance of 0.06306 K/W with pumping power of 0.38317 W, and a minimum pumping power of 0.00171 W with thermal resistance of 0.37755 K/W. The optimization finds the optimal thermal resistance and pumping power are 0.09348 K/W and 0.02888 W, respectively. It shows that not only the cooling performance is significantly improved by 14.06%, but also the pumping power is considerably reduced by 16.40% when compared with the original design. Furthermore, the underlying physics of the effect of multi-parameter on the performance is analyzed. The results reveal that the compromise mediation between the pumping power of the upper channel and the cooling performance of the lower channel is responsible for reaching the optimal performance. Based on this mechanism, the design criteria to reach performance of preference are proposed.
ArticleNumber 119217
Author Wu, Hao-Chi
Wang, Tian-Hu
Meng, Jing-Hui
Yan, Wei-Mon
Author_xml – sequence: 1
  givenname: Tian-Hu
  surname: Wang
  fullname: Wang, Tian-Hu
  organization: Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China
– sequence: 2
  givenname: Hao-Chi
  surname: Wu
  fullname: Wu, Hao-Chi
  organization: School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 3
  givenname: Jing-Hui
  surname: Meng
  fullname: Meng, Jing-Hui
  email: jinghui818627@gmail.com
  organization: School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 4
  givenname: Wei-Mon
  surname: Yan
  fullname: Yan, Wei-Mon
  email: wmyan@ntut.edu.tw
  organization: Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
BookMark eNqVkE1vFDEMhiPUSmxb_kMkLlyyxJP5vIEqyocq9ULPUSbj6XqYSZYkU7T99WS7nOgFTpbl14_l54KdOe-QsXcgtyChfj9tadqhSYuJMQXj4ohhW0jotgBdAc0rtoG26UQBbXfGNlJCIzoF8jW7iHE6trKsNyzc7RMt9GQSecf9yA0f_NrPKGZzwIADX8gGb3fGOZz58SKP5H7wX5R2POJCYu-DX6MI1EfeH_iyzomE7ye0iR6RP6DDRJab-cGHvLRcsfPRzBHf_KmX7P7m0_frL-L27vPX64-3wqpGJtFCOfSmH7qmKAdV1bZq0AxVWeWBbIdOldipGlRrbQ-qkqMqoa1qMCPYRtaoLtnbE3cf_M8VY9KTX4PLJ3WhqlLJHJY5dXNK5S9jDDhqS-nZRrZKswapj771pF_61kff-uQ7gz78BdoHWkw4_A_i2wmBWcsj5Wm0hM7iQCHb1IOnf4f9Bk_7r9I
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2021_117541
crossref_primary_10_1016_j_applthermaleng_2022_118755
crossref_primary_10_1016_j_applthermaleng_2022_118353
crossref_primary_10_1016_j_ijthermalsci_2022_107878
crossref_primary_10_3390_s21103356
crossref_primary_10_1016_j_applthermaleng_2021_117157
crossref_primary_10_1016_j_icheatmasstransfer_2021_105633
crossref_primary_10_1016_j_applthermaleng_2021_117154
crossref_primary_10_1007_s10973_022_11545_8
crossref_primary_10_1016_j_energy_2025_137265
crossref_primary_10_1016_j_icheatmasstransfer_2024_108137
crossref_primary_10_1016_j_icheatmasstransfer_2021_105360
crossref_primary_10_1016_j_applthermaleng_2023_121096
crossref_primary_10_1016_j_applthermaleng_2022_118457
crossref_primary_10_1108_HFF_02_2021_0104
crossref_primary_10_1016_j_applthermaleng_2022_118456
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124513
crossref_primary_10_1140_epjs_s11734_022_00454_4
crossref_primary_10_1063_5_0118700
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123063
crossref_primary_10_1016_j_energy_2024_131886
crossref_primary_10_1016_j_ces_2023_119081
crossref_primary_10_1080_15567036_2022_2095460
crossref_primary_10_1016_j_applthermaleng_2024_124652
crossref_primary_10_1016_j_ijthermalsci_2025_109879
crossref_primary_10_1016_j_ijmecsci_2020_105886
crossref_primary_10_1016_j_tsep_2023_101652
crossref_primary_10_1016_j_ijthermalsci_2024_108942
crossref_primary_10_2298_TSCI221219074S
crossref_primary_10_3389_fenrg_2022_925053
crossref_primary_10_1007_s10973_023_12620_4
crossref_primary_10_1016_j_csite_2024_105028
crossref_primary_10_32604_cmes_2021_012839
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124638
crossref_primary_10_1016_j_applthermaleng_2023_120307
crossref_primary_10_1016_j_ijft_2025_101085
crossref_primary_10_1016_j_applthermaleng_2023_121994
crossref_primary_10_2298_TSCI220307121J
crossref_primary_10_3390_e23111528
crossref_primary_10_3390_fluids7010007
crossref_primary_10_3390_mi13060918
crossref_primary_10_1016_j_applthermaleng_2021_117295
crossref_primary_10_1016_j_tsep_2024_102413
crossref_primary_10_1016_j_tsep_2023_102116
crossref_primary_10_1016_j_compchemeng_2023_108500
crossref_primary_10_1016_j_applthermaleng_2025_126441
crossref_primary_10_1002_apj_2858
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123634
crossref_primary_10_1016_j_icheatmasstransfer_2022_106574
crossref_primary_10_1088_2631_7990_ad2c5f
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124695
crossref_primary_10_1080_10407782_2025_2543582
crossref_primary_10_1016_j_applthermaleng_2024_122933
crossref_primary_10_1016_j_ast_2022_107933
crossref_primary_10_1080_01457632_2025_2459982
crossref_primary_10_1007_s10973_024_13616_4
crossref_primary_10_1016_j_applthermaleng_2024_123345
crossref_primary_10_1016_j_energy_2020_119223
crossref_primary_10_1016_j_icheatmasstransfer_2025_108689
crossref_primary_10_1080_10407790_2023_2296620
crossref_primary_10_1016_j_applthermaleng_2025_125880
crossref_primary_10_1016_j_apenergy_2022_119046
crossref_primary_10_1016_j_ijthermalsci_2020_106729
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124442
crossref_primary_10_1038_s41598_022_23061_8
crossref_primary_10_1016_j_seta_2021_101162
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125431
crossref_primary_10_1016_j_jwpe_2023_104502
crossref_primary_10_1080_10407790_2024_2338919
crossref_primary_10_1177_09544089221108275
crossref_primary_10_3390_en14206764
crossref_primary_10_1016_j_applthermaleng_2024_123574
crossref_primary_10_1016_j_applthermaleng_2024_123851
crossref_primary_10_1016_j_ijheatfluidflow_2024_109600
crossref_primary_10_1155_2022_2923661
crossref_primary_10_1016_j_applthermaleng_2022_119917
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121336
crossref_primary_10_1016_j_icheatmasstransfer_2024_107489
crossref_primary_10_1016_j_applthermaleng_2021_116829
crossref_primary_10_1016_j_applthermaleng_2023_121294
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121459
crossref_primary_10_1007_s13369_023_08149_1
crossref_primary_10_1016_j_ces_2024_120556
crossref_primary_10_1016_j_icheatmasstransfer_2025_109593
crossref_primary_10_1002_htj_22990
crossref_primary_10_1016_j_ijthermalsci_2021_106961
crossref_primary_10_1016_j_chaos_2020_109883
crossref_primary_10_1016_j_csite_2025_106714
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120634
crossref_primary_10_1016_j_applthermaleng_2022_118127
crossref_primary_10_1016_j_apm_2021_12_008
crossref_primary_10_1016_j_icheatmasstransfer_2024_108106
crossref_primary_10_1016_j_applthermaleng_2025_125718
crossref_primary_10_1016_j_applthermaleng_2024_122386
crossref_primary_10_1016_j_tca_2020_178803
crossref_primary_10_1016_j_applthermaleng_2025_127297
crossref_primary_10_1016_j_tsep_2022_101203
crossref_primary_10_1016_j_icheatmasstransfer_2021_105261
crossref_primary_10_1016_j_icheatmasstransfer_2024_108231
Cites_doi 10.1016/j.enconman.2013.10.063
10.1016/j.ijheatmasstransfer.2015.10.023
10.3390/en12142832
10.1016/j.energy.2011.11.043
10.1016/j.ijheatmasstransfer.2019.02.029
10.1016/j.ijheatfluidflow.2005.08.005
10.1016/j.ijheatmasstransfer.2018.11.040
10.1016/0377-2217(94)90282-8
10.1016/j.rser.2017.09.110
10.1016/j.ijthermalsci.2016.06.007
10.1016/j.icheatmasstransfer.2016.04.024
10.1016/j.applthermaleng.2017.04.058
10.1016/j.icheatmasstransfer.2018.03.023
10.1017/jfm.2019.491
10.1109/4235.996017
10.1016/j.ijthermalsci.2018.04.035
10.1016/0017-9310(94)90103-1
10.1016/j.solener.2018.06.083
10.1016/j.icheatmasstransfer.2010.06.014
10.1016/j.ijheatmasstransfer.2017.10.015
10.1016/j.icheatmasstransfer.2018.03.003
10.1016/j.ijheatmasstransfer.2014.06.072
10.1016/j.ijheatmasstransfer.2019.04.032
10.1016/j.ijheatmasstransfer.2015.10.043
10.1016/j.ijheatmasstransfer.2019.04.039
10.1016/j.ijthermalsci.2010.05.016
10.1016/j.apenergy.2019.03.071
10.1115/1.4005126
10.1016/j.ijheatmasstransfer.2010.02.022
10.1016/j.ijheatmasstransfer.2019.118772
10.1016/j.icheatmasstransfer.2015.04.005
10.1016/j.applthermaleng.2018.11.038
10.1016/j.applthermaleng.2019.114298
10.1016/j.applthermaleng.2019.01.051
10.1016/j.ijheatmasstransfer.2014.10.022
10.1016/j.ijheatmasstransfer.2019.118518
10.1016/j.enconman.2019.02.010
10.1016/j.ijheatmasstransfer.2016.05.118
10.1016/j.ijheatmasstransfer.2011.01.029
10.1109/EDL.1981.25367
10.1016/j.ijthermalsci.2014.06.013
10.1016/j.enconman.2015.12.006
10.1016/j.ijheatmasstransfer.2015.01.040
10.1016/j.icheatmasstransfer.2019.03.009
10.1016/j.ijthermalsci.2018.12.029
10.1016/j.ijthermalsci.2019.04.032
10.1016/j.ijhydene.2015.04.144
10.1016/j.applthermaleng.2016.08.193
10.1016/j.applthermaleng.2018.03.065
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Mar 2020
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Mar 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2019.119217
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2019_119217
S0017931019349476
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
H8D
KR7
L7M
SSH
ID FETCH-LOGICAL-c370t-814dbabd9724d356c57ead54581408d934e936138ccb1350f3418561af1c706e3
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538009600085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Fri Jul 25 03:56:01 EDT 2025
Sat Nov 29 07:31:12 EST 2025
Tue Nov 18 22:14:36 EST 2025
Fri Feb 23 02:48:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Numerical modeling
Porous rib
NSGA-II
Microchannel heat sink
Thermal resistance
Multi-objective optimization
Pumping power
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-814dbabd9724d356c57ead54581408d934e936138ccb1350f3418561af1c706e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2354305610
PQPubID 2045464
ParticipantIDs proquest_journals_2354305610
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2019_119217
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119217
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_119217
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ho, Chang, Yan, Amani (bib0020) 2018; 94
Zehforoosh, Hossainpour (bib0045) 2010; 49
Deb, Member, Pratap, Agarwal, Meyarivan (bib0046) 2002; 6
Shen, Jin, Zhang, Xie, Sunden, Yan (bib0032) 2017; 121
Deng, Menon, Lavrich, Wang, Hagen (bib0008) 2017; 110
Yang, Ye, Li, Zhu, Liao, Zhang (bib0007) 2015; 40
Ghahremannezhad, Xu, Nazari, Ahmadi, Vafai (bib0041) 2019; 131
Drummond, Back, Sinanis, Janes, Peroulis, Weibel, Garimella (bib0011) 2018; 117
Leng, Wang, Yan, Wang (bib0017) 2016; 110
Pourfattah, Arani, Babaie, Nguyen, Asadi (bib0013) 2019; 143
Wang, Li, Wang, Lu (bib0039) 2018; 93
Chamoli, Lu, Chen, Cheng, Yu (bib0034) 2019; 138
Ho, Chang, Yan, Amani (bib0019) 2018; 130
Rezania, Rosendahl (bib0006) 2012; 37
Moradikazerouni, Afrand, Alsarraf, Mahian, Wongwises, Tran (bib0030) 2019; 150
Bayomy, Saghir, Yousefi (bib0044) 2016; 109
Ge, Liu, Liu (bib0022) 2016; 101
Kandlikar (bib0001) 2012; 134
Lai, Liu, Hwang (bib0047) 1994; 76
Hadavand, Yousefzadeh, Akbari, Pourfattah, Nguyen, Asadi (bib0014) 2019; 162
Bazdar, Toghraie, Pourfattah, Akbari, Nguyen, Asadi (bib0025) 2019
Li, Wang, Wang, Wang (bib0042) 2019; 137
Bowers, Mudawar (bib0049) 1994; 37
Wang, Wang, Yan, Duan, Lee, Xu (bib0043) 2011; 54
Moradikazerouni, Afrand, Alsarraf, Wongwises, Asadi, Nguyen (bib0035) 2019; 134
Naqiuddin, Saw, Yew, Yusof, Ng, Yew (bib0004) 2018; 82
Gunnasegaran, Mohammed, Shuaib, Saidur (bib0028) 2010; 37
Tuckerman, Pease (bib0005) 1981; 2
Yadav, Baghel, Kumar, Kadam (bib0036) 2016; 93
Zargartalebi1, Azaiez (bib0023) 2019; 875
Leng, Wang, Wang, Yan (bib0031) 2015; 84
Kuppusamy, Saidur, Ghazali, Mohammed (bib0037) 2014; 78
Jung, Boo (bib0018) 2019; 145
Gong, Li, Bai, Xu (bib0040) 2018; 137
Kadam, Kumar (bib0002) 2014; 85
Arie, Shooshtari, Dessiatoun, Al-Hajri, Ohadi (bib0027) 2015; 81
Hatami, Ganji (bib0012) 2014; 78
Radwan, Ahmed (bib0009) 2018; 171
Lu, Vafai (bib0003) 2016; 76
Lin, Mo, Jia, Yang, Chen, Cheng (bib0010) 2019; 242
Liu, Shao, Chen, Xie (bib0016) 2019; 144
Ge, Wang, Liu, Liu (bib0029) 2019; 148
Hetsroni, Gurevich, Rozenblit (bib0021) 2006; 27
Zhang, Yang, Zhou, Rao, Gao, Ding, Shu, Liu (bib0015) 2019; 185
Paniagua-Guerra, Sehgal, Gonzalez-Valle, Ramos-Alvarado (bib0026) 2019; 138
Meng, Wu, Wang (bib0048) 2019; 12
Sui, Teo, Lee, Chew, Shu (bib0024) 2010; 53
Peng, Wang, Wang (bib0050) 2016; 93
Shi, Li, Mu, Yin (bib0033) 2019; 104
Leng, Wang, Wang, Yan (bib0038) 2015; 65
Zehforoosh (10.1016/j.ijheatmasstransfer.2019.119217_bib0045) 2010; 49
Ho (10.1016/j.ijheatmasstransfer.2019.119217_bib0019) 2018; 130
Moradikazerouni (10.1016/j.ijheatmasstransfer.2019.119217_bib0035) 2019; 134
Gong (10.1016/j.ijheatmasstransfer.2019.119217_bib0040) 2018; 137
Leng (10.1016/j.ijheatmasstransfer.2019.119217_bib0017) 2016; 110
Ghahremannezhad (10.1016/j.ijheatmasstransfer.2019.119217_bib0041) 2019; 131
Bayomy (10.1016/j.ijheatmasstransfer.2019.119217_bib0044) 2016; 109
Hetsroni (10.1016/j.ijheatmasstransfer.2019.119217_bib0021) 2006; 27
Wang (10.1016/j.ijheatmasstransfer.2019.119217_bib0043) 2011; 54
Leng (10.1016/j.ijheatmasstransfer.2019.119217_bib0031) 2015; 84
Yadav (10.1016/j.ijheatmasstransfer.2019.119217_bib0036) 2016; 93
Wang (10.1016/j.ijheatmasstransfer.2019.119217_bib0039) 2018; 93
Kuppusamy (10.1016/j.ijheatmasstransfer.2019.119217_bib0037) 2014; 78
Arie (10.1016/j.ijheatmasstransfer.2019.119217_bib0027) 2015; 81
Kadam (10.1016/j.ijheatmasstransfer.2019.119217_bib0002) 2014; 85
Li (10.1016/j.ijheatmasstransfer.2019.119217_bib0042) 2019; 137
Lin (10.1016/j.ijheatmasstransfer.2019.119217_bib0010) 2019; 242
Ge (10.1016/j.ijheatmasstransfer.2019.119217_bib0029) 2019; 148
Leng (10.1016/j.ijheatmasstransfer.2019.119217_bib0038) 2015; 65
Bowers (10.1016/j.ijheatmasstransfer.2019.119217_bib0049) 1994; 37
Pourfattah (10.1016/j.ijheatmasstransfer.2019.119217_bib0013) 2019; 143
Paniagua-Guerra (10.1016/j.ijheatmasstransfer.2019.119217_bib0026) 2019; 138
Lai (10.1016/j.ijheatmasstransfer.2019.119217_bib0047) 1994; 76
Ge (10.1016/j.ijheatmasstransfer.2019.119217_bib0022) 2016; 101
Lu (10.1016/j.ijheatmasstransfer.2019.119217_bib0003) 2016; 76
Drummond (10.1016/j.ijheatmasstransfer.2019.119217_bib0011) 2018; 117
Shi (10.1016/j.ijheatmasstransfer.2019.119217_bib0033) 2019; 104
Yang (10.1016/j.ijheatmasstransfer.2019.119217_bib0007) 2015; 40
Hatami (10.1016/j.ijheatmasstransfer.2019.119217_bib0012) 2014; 78
Hadavand (10.1016/j.ijheatmasstransfer.2019.119217_bib0014) 2019; 162
Kandlikar (10.1016/j.ijheatmasstransfer.2019.119217_bib0001) 2012; 134
Tuckerman (10.1016/j.ijheatmasstransfer.2019.119217_bib0005) 1981; 2
Rezania (10.1016/j.ijheatmasstransfer.2019.119217_bib0006) 2012; 37
Radwan (10.1016/j.ijheatmasstransfer.2019.119217_bib0009) 2018; 171
Zargartalebi1 (10.1016/j.ijheatmasstransfer.2019.119217_bib0023) 2019; 875
Meng (10.1016/j.ijheatmasstransfer.2019.119217_bib0048) 2019; 12
Deb (10.1016/j.ijheatmasstransfer.2019.119217_bib0046) 2002; 6
Chamoli (10.1016/j.ijheatmasstransfer.2019.119217_bib0034) 2019; 138
Shen (10.1016/j.ijheatmasstransfer.2019.119217_bib0032) 2017; 121
Bazdar (10.1016/j.ijheatmasstransfer.2019.119217_bib0025) 2019
Deng (10.1016/j.ijheatmasstransfer.2019.119217_bib0008) 2017; 110
Sui (10.1016/j.ijheatmasstransfer.2019.119217_bib0024) 2010; 53
Zhang (10.1016/j.ijheatmasstransfer.2019.119217_bib0015) 2019; 185
Moradikazerouni (10.1016/j.ijheatmasstransfer.2019.119217_bib0030) 2019; 150
Ho (10.1016/j.ijheatmasstransfer.2019.119217_bib0020) 2018; 94
Peng (10.1016/j.ijheatmasstransfer.2019.119217_bib0050) 2016; 93
Naqiuddin (10.1016/j.ijheatmasstransfer.2019.119217_bib0004) 2018; 82
Gunnasegaran (10.1016/j.ijheatmasstransfer.2019.119217_bib0028) 2010; 37
Jung (10.1016/j.ijheatmasstransfer.2019.119217_bib0018) 2019; 145
Liu (10.1016/j.ijheatmasstransfer.2019.119217_bib0016) 2019; 144
References_xml – volume: 162
  start-page: 114
  year: 2019
  end-page: 298
  ident: bib0014
  article-title: A numerical investigation on the effects of mixed convection of Ag-water nanofluid inside a sim-circular lid-driven cavity on the temperature of an electronic silicon chip
  publication-title: Appl. Therm. Eng.
– volume: 93
  start-page: 1072
  year: 2016
  end-page: 1081
  ident: bib0050
  article-title: Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel
  publication-title: Int. J. Heat Mass Transf.
– volume: 82
  start-page: 901
  year: 2018
  end-page: 914
  ident: bib0004
  article-title: Overview of micro-channel design for high heat flux application
  publication-title: Renew. Sustain. Energy Rev.
– volume: 110
  start-page: 154
  year: 2016
  end-page: 164
  ident: bib0017
  article-title: Heat transfer enhancement of microchannel heat sink using transcritical carbon dioxide as the coolant
  publication-title: Energy Conv. Manag.
– volume: 53
  start-page: 2760
  year: 2010
  end-page: 2772
  ident: bib0024
  article-title: Fluid flow and heat transfer in wavy microchannels
  publication-title: Int. J. Heat Mass Transf.
– volume: 76
  start-page: 486
  year: 1994
  end-page: 500
  ident: bib0047
  article-title: TOPSIS for MODM
  publication-title: Eur. J. Oper. Res.
– volume: 93
  start-page: 41
  year: 2018
  end-page: 47
  ident: bib0039
  article-title: Flow and heat transfer characteristics in double-layered microchannel heat sinks with porous fins
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 150
  start-page: 1078
  year: 2019
  end-page: 1089
  ident: bib0030
  article-title: Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board
  publication-title: Appl. Therm. Eng.
– volume: 875
  start-page: 1035
  year: 2019
  end-page: 1057
  ident: bib0023
  article-title: Flow dynamics and heat transfer in partially porous microchannel heat sinks
  publication-title: J. Fluid Mech.
– volume: 49
  start-page: 1649
  year: 2010
  end-page: 1662
  ident: bib0045
  article-title: Numerical investigation of pressure drop reduction without surrendering heat transfer enhancement in partially porous channel
  publication-title: Int. J. Therm. Sci.
– volume: 93
  start-page: 612
  year: 2016
  end-page: 622
  ident: bib0036
  article-title: Numerical investigation of heat transfer in extended surface microchannels
  publication-title: Int. J. Heat Mass Transf.
– volume: 101
  start-page: 981
  year: 2016
  end-page: 987
  ident: bib0022
  article-title: Multi-objective genetic optimization of the heat transfer for tube inserted with porous media
  publication-title: Int. J. Heat Mass Transf.
– volume: 109
  start-page: 182
  year: 2016
  end-page: 200
  ident: bib0044
  article-title: Electronic cooling using water flow in aluminum metal foam heat sink: experimental and numerical approach
  publication-title: Int. J. Therm. Sci.
– volume: 94
  start-page: 96
  year: 2018
  end-page: 105
  ident: bib0020
  article-title: Comparative study on thermal performance of MEPCM suspensions in parallel and divergent minichannel heat sinks
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 138
  start-page: 373
  year: 2019
  end-page: 389
  ident: bib0034
  article-title: Numerical optimization of design parameters for a modified double-layer microchannel heat sink
  publication-title: Int. J. Heat Mass Transf.
– volume: 121
  start-page: 180
  year: 2017
  end-page: 189
  ident: bib0032
  article-title: Computational optimization of counter-flow double-layered microchannel heat sinks subjected to thermal resistance and pumping power
  publication-title: Appl. Therm. Eng.
– volume: 137
  start-page: 616
  year: 2019
  end-page: 626
  ident: bib0042
  article-title: Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks
  publication-title: Int. J. Therm. Sci.
– volume: 138
  start-page: 257
  year: 2019
  end-page: 266
  ident: bib0026
  article-title: Fractal channel manifolds for microjet liquid-cooled heat sinks
  publication-title: Int. J. Heat Mass Transf.
– volume: 171
  start-page: 229
  year: 2018
  end-page: 246
  ident: bib0009
  article-title: Thermal management of concentrator photovoltaic systems using microchannel heat sink with nanofluids
  publication-title: Solar Energy
– volume: 131
  start-page: 52
  year: 2019
  end-page: 63
  ident: bib0041
  article-title: Effect of porous substrates on thermohydraulic performance enhancement of double layer microchannel heat sinks
  publication-title: Int. J. Heat Mass Transf.
– volume: 2
  start-page: 126
  year: 1981
  end-page: 129
  ident: bib0005
  article-title: High-performance heat sinking for VLSI
  publication-title: IEEE Electron. Device Lett.
– volume: 143
  start-page: 118
  year: 2019
  end-page: 518
  ident: bib0013
  article-title: On the thermal characteristics of a manifold microchannel heat sink subjected to nanofluid using two-phase flow simulation
  publication-title: Int. J. Heat Mass Transf.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0046
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 134
  year: 2012
  ident: bib0001
  article-title: History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review
  publication-title: J. Heat Transf.
– volume: 40
  start-page: 11983
  year: 2015
  end-page: 11988
  ident: bib0007
  article-title: Biofilm distribution and performance of microfluidic microbial fuel cells with different microchannel geometries
  publication-title: Int. J. Hydrog. Energy
– volume: 148
  start-page: 120
  year: 2019
  end-page: 128
  ident: bib0029
  article-title: Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method
  publication-title: Appl. Therm. Eng.
– volume: 27
  start-page: 259
  year: 2006
  end-page: 266
  ident: bib0021
  article-title: Sintered porous medium heat sink for cooling of high-power mini-devices
  publication-title: Int. J. Heat Fluid Flow
– start-page: 1
  year: 2019
  end-page: 16
  ident: bib0025
  article-title: Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths
  publication-title: J. Therm. Anal. Calorim.
– volume: 134
  start-page: 1218
  year: 2019
  end-page: 1226
  ident: bib0035
  article-title: Investigation of a computer CPU heat sink under laminar forced convection using a structural stability method
  publication-title: Int. J. Heat Mass Transf.
– volume: 242
  start-page: 232
  year: 2019
  end-page: 238
  ident: bib0010
  article-title: Experimental study and Taguchi analysis on LED cooling by thermoelectric cooler integrated with microchannel heat sink
  publication-title: Appl. Energy
– volume: 130
  start-page: 333
  year: 2018
  end-page: 346
  ident: bib0019
  article-title: Efficacy of divergent minichannels on cooling performance of heat sinks with water-based MEPCM suspensions
  publication-title: Int. J. Therm. Sci.
– volume: 12
  start-page: 2832
  year: 2019
  ident: bib0048
  article-title: Optimization of two-stage combined thermoelectric devices by a three-dimensional multi-physics model and multi-objective genetic algorithm
  publication-title: Energies
– volume: 78
  start-page: 216
  year: 2014
  end-page: 223
  ident: bib0037
  article-title: Numerical study of thermal enhancement in micro channel heat sink with secondary flow
  publication-title: Int. J. Heat Mass Transf.
– volume: 137
  start-page: 288
  year: 2018
  end-page: 295
  ident: bib0040
  article-title: Thermal performance of micro-channel heat sink with metallic porous/solid compound fin design
  publication-title: Appl. Therm. Eng.
– volume: 117
  start-page: 319
  year: 2018
  end-page: 330
  ident: bib0011
  article-title: A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics
  publication-title: Int. J. Heat Mass Transf.
– volume: 104
  start-page: 89
  year: 2019
  end-page: 100
  ident: bib0033
  article-title: Geometry parameters optimization for a microchannel heat sink with secondary flow channel
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 76
  start-page: 271
  year: 2016
  end-page: 284
  ident: bib0003
  article-title: A comparative analysis of innovative microchannel heat sinks for electronic cooling
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 65
  start-page: 52
  year: 2015
  end-page: 57
  ident: bib0038
  article-title: Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 144
  start-page: 129
  year: 2019
  end-page: 146
  ident: bib0016
  article-title: Heat transfer and flow performance of a novel T type heat sink with GaInSn Coolant
  publication-title: Int. J. Therm. Sci.
– volume: 54
  start-page: 2811
  year: 2011
  end-page: 2819
  ident: bib0043
  article-title: Multi-parameters optimization for microchannel heat sink using inverse problem method
  publication-title: Int. J. Heat Mass Transf.
– volume: 78
  start-page: 347
  year: 2014
  end-page: 358
  ident: bib0012
  article-title: Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method
  publication-title: Energy Conv. Manag.
– volume: 84
  start-page: 359
  year: 2015
  end-page: 369
  ident: bib0031
  article-title: Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink
  publication-title: Int. J. Heat Mass Transf.
– volume: 37
  start-page: 1078
  year: 2010
  end-page: 1086
  ident: bib0028
  article-title: The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 145
  year: 2019
  ident: bib0018
  article-title: A novel transient thermohydraulic model of micro-channel heat sink
  publication-title: Int. J. Heat Mass Transf.
– volume: 37
  start-page: 321
  year: 1994
  end-page: 332
  ident: bib0049
  article-title: High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
– volume: 81
  start-page: 478
  year: 2015
  end-page: 489
  ident: bib0027
  article-title: Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger
  publication-title: Int. J. Heat Mass Transf.
– volume: 110
  start-page: 327
  year: 2017
  end-page: 334
  ident: bib0008
  article-title: Design, simulation, and testing of a novel micro-channel heat exchanger for natural gas cooling in automotive applications
  publication-title: Appl. Therm. Eng.
– volume: 85
  start-page: 73
  year: 2014
  end-page: 92
  ident: bib0002
  article-title: Twenty first century cooling solution: microchannel heat sinks
  publication-title: Int. J. Therm. Sci.
– volume: 185
  start-page: 248
  year: 2019
  end-page: 258
  ident: bib0015
  article-title: Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management
  publication-title: Energy Conv. Manag.
– volume: 37
  start-page: 220
  year: 2012
  end-page: 227
  ident: bib0006
  article-title: Thermal effect of a thermoelectric generator on parallel microchannel heat sink
  publication-title: Energy
– volume: 78
  start-page: 347
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0012
  article-title: Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method
  publication-title: Energy Conv. Manag.
  doi: 10.1016/j.enconman.2013.10.063
– volume: 93
  start-page: 612
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0036
  article-title: Numerical investigation of heat transfer in extended surface microchannels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.10.023
– volume: 12
  start-page: 2832
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0048
  article-title: Optimization of two-stage combined thermoelectric devices by a three-dimensional multi-physics model and multi-objective genetic algorithm
  publication-title: Energies
  doi: 10.3390/en12142832
– volume: 37
  start-page: 220
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0006
  article-title: Thermal effect of a thermoelectric generator on parallel microchannel heat sink
  publication-title: Energy
  doi: 10.1016/j.energy.2011.11.043
– volume: 134
  start-page: 1218
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0035
  article-title: Investigation of a computer CPU heat sink under laminar forced convection using a structural stability method
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.02.029
– volume: 27
  start-page: 259
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0021
  article-title: Sintered porous medium heat sink for cooling of high-power mini-devices
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2005.08.005
– volume: 131
  start-page: 52
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0041
  article-title: Effect of porous substrates on thermohydraulic performance enhancement of double layer microchannel heat sinks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.11.040
– volume: 76
  start-page: 486
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0047
  article-title: TOPSIS for MODM
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(94)90282-8
– volume: 82
  start-page: 901
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0004
  article-title: Overview of micro-channel design for high heat flux application
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.09.110
– volume: 109
  start-page: 182
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0044
  article-title: Electronic cooling using water flow in aluminum metal foam heat sink: experimental and numerical approach
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.06.007
– volume: 76
  start-page: 271
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0003
  article-title: A comparative analysis of innovative microchannel heat sinks for electronic cooling
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2016.04.024
– volume: 121
  start-page: 180
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0032
  article-title: Computational optimization of counter-flow double-layered microchannel heat sinks subjected to thermal resistance and pumping power
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.04.058
– volume: 94
  start-page: 96
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0020
  article-title: Comparative study on thermal performance of MEPCM suspensions in parallel and divergent minichannel heat sinks
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2018.03.023
– volume: 875
  start-page: 1035
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0023
  article-title: Flow dynamics and heat transfer in partially porous microchannel heat sinks
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.491
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0046
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 130
  start-page: 333
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0019
  article-title: Efficacy of divergent minichannels on cooling performance of heat sinks with water-based MEPCM suspensions
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.04.035
– volume: 37
  start-page: 321
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0049
  article-title: High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(94)90103-1
– volume: 171
  start-page: 229
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0009
  article-title: Thermal management of concentrator photovoltaic systems using microchannel heat sink with nanofluids
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2018.06.083
– volume: 37
  start-page: 1078
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0028
  article-title: The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2010.06.014
– volume: 117
  start-page: 319
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0011
  article-title: A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.10.015
– volume: 93
  start-page: 41
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0039
  article-title: Flow and heat transfer characteristics in double-layered microchannel heat sinks with porous fins
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2018.03.003
– volume: 78
  start-page: 216
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0037
  article-title: Numerical study of thermal enhancement in micro channel heat sink with secondary flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.06.072
– volume: 138
  start-page: 373
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0034
  article-title: Numerical optimization of design parameters for a modified double-layer microchannel heat sink
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.04.032
– volume: 93
  start-page: 1072
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0050
  article-title: Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.10.043
– volume: 138
  start-page: 257
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0026
  article-title: Fractal channel manifolds for microjet liquid-cooled heat sinks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.04.039
– volume: 49
  start-page: 1649
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0045
  article-title: Numerical investigation of pressure drop reduction without surrendering heat transfer enhancement in partially porous channel
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.05.016
– volume: 242
  start-page: 232
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0010
  article-title: Experimental study and Taguchi analysis on LED cooling by thermoelectric cooler integrated with microchannel heat sink
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.071
– volume: 134
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0001
  article-title: History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4005126
– volume: 53
  start-page: 2760
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0024
  article-title: Fluid flow and heat transfer in wavy microchannels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.02.022
– volume: 145
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0018
  article-title: A novel transient thermohydraulic model of micro-channel heat sink
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118772
– volume: 65
  start-page: 52
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0038
  article-title: Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2015.04.005
– volume: 148
  start-page: 120
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0029
  article-title: Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.11.038
– volume: 162
  start-page: 114
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0014
  article-title: A numerical investigation on the effects of mixed convection of Ag-water nanofluid inside a sim-circular lid-driven cavity on the temperature of an electronic silicon chip
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114298
– volume: 150
  start-page: 1078
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0030
  article-title: Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.01.051
– volume: 81
  start-page: 478
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0027
  article-title: Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.10.022
– volume: 143
  start-page: 118
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0013
  article-title: On the thermal characteristics of a manifold microchannel heat sink subjected to nanofluid using two-phase flow simulation
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118518
– volume: 185
  start-page: 248
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0015
  article-title: Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management
  publication-title: Energy Conv. Manag.
  doi: 10.1016/j.enconman.2019.02.010
– volume: 101
  start-page: 981
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0022
  article-title: Multi-objective genetic optimization of the heat transfer for tube inserted with porous media
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.05.118
– volume: 54
  start-page: 2811
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0043
  article-title: Multi-parameters optimization for microchannel heat sink using inverse problem method
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.01.029
– volume: 2
  start-page: 126
  year: 1981
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0005
  article-title: High-performance heat sinking for VLSI
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/EDL.1981.25367
– volume: 85
  start-page: 73
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0002
  article-title: Twenty first century cooling solution: microchannel heat sinks
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2014.06.013
– volume: 110
  start-page: 154
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0017
  article-title: Heat transfer enhancement of microchannel heat sink using transcritical carbon dioxide as the coolant
  publication-title: Energy Conv. Manag.
  doi: 10.1016/j.enconman.2015.12.006
– volume: 84
  start-page: 359
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0031
  article-title: Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.01.040
– volume: 104
  start-page: 89
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0033
  article-title: Geometry parameters optimization for a microchannel heat sink with secondary flow channel
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2019.03.009
– volume: 137
  start-page: 616
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0042
  article-title: Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.12.029
– volume: 144
  start-page: 129
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0016
  article-title: Heat transfer and flow performance of a novel T type heat sink with GaInSn Coolant
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2019.04.032
– volume: 40
  start-page: 11983
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0007
  article-title: Biofilm distribution and performance of microfluidic microbial fuel cells with different microchannel geometries
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.04.144
– volume: 110
  start-page: 327
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0008
  article-title: Design, simulation, and testing of a novel micro-channel heat exchanger for natural gas cooling in automotive applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.08.193
– start-page: 1
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0025
  article-title: Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths
  publication-title: J. Therm. Anal. Calorim.
– volume: 137
  start-page: 288
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119217_bib0040
  article-title: Thermal performance of micro-channel heat sink with metallic porous/solid compound fin design
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.03.065
SSID ssj0017046
Score 2.607159
Snippet •A multi-objective optimization algorithm is coupled into a 3D fluid-solid conjugated model.•Performance of a double-layered MCHS with semi-porous ribs is...
Thermal resistance and pumping power are two key metrics to evaluate the performance of microchannel heat sinks. To reach their better performance, porous...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119217
SubjectTerms Cooling
Design optimization
Design parameters
Flow velocity
Genetic algorithms
Heat sinks
Heat transfer
Microchannel heat sink
Microchannels
Multi-objective optimization
Multiple objective analysis
NSGA-II
Numerical modeling
Optimization
Performance evaluation
Porous media
Porous rib
Pumping
Pumping power
Thermal energy
Thermal resistance
Three dimensional models
Title Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.119217
https://www.proquest.com/docview/2354305610
Volume 149
WOSCitedRecordID wos000538009600085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKB4gL4lMMBvIBIaTJKImbOD6hqeo0UOk4dFBOURw7I1WblKadtj-P_4zn2MnSAhM9cIkiN3Hivl-ef35-Hwi95soVqfIDkkrPJ73YDQj3hSSxC9yWBQxIaRUoPGSjUTiZ8M-dzs86FuZixvI8vLzki_8qamgDYevQ2R3E3XQKDXAOQocjiB2O_yT4U1ACcxtdaaIfZbEWM0Vm8ZUuzHk41z54OuA3V1Uc5OqwhAWpdVZX84wAJS_WJVlmotTstPI5JIWYGt2oiy6rKs3r7LxYwk3zNsHdtDC28lJUD9JW-jnQdV2ZAvhyyzPYmq3HgFZysm6a19XUGBek_z1rsKGsFzHMunBt0_7N2HK_qox8smCz5gxYuzb-XMbG1sTZfGmrbZhKObX-r8po6pBxAvyEb6hyk_7UKmP3j1OEsVZM32VTPXA95nrI2tGPwxzCPRNOupmde3QaHZ8Nh9F4MBm_WfwgunCZ3uC3VVxuoT2P-Tzsor2jD4PJx2YrC-Ae1HRAj-EuenvtZHjzS_yNK22xhooKjR-g-3YNg48M9h6ijsofoTuVL3FSPkbLNgJxkeIYbyIQtxGI9athjUCsEYi3EYjFFd5CILYIxA0Cn6Cz48G4f0JsaQ-SUOastOFZilhIzryepH6Q-AxUmt7EhQV_KDntKU6BaYZJIlzqOynVSZYCN07dhDmBok9RNy9y9Qxhn0onkFwqlgK1d1zhU-Z6QiRuElBPxvvoff0nRonNe6_Lr8yi2sFxGv0uhkiLITJi2Ee86WFhcsDscG-_lltkOa3hqhHgcYdeDmqRR_bLLSOP-r3KAOA8v_nnF-je9Zd2gLqr5Vq9RLeTi1VWLl9ZvP4CuTfYYg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+a+double-layered+microchannel+heat+sink+with+semi-porous-ribs+by+multi-objective+genetic+algorithm&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Wang%2C+Tian-Hu&rft.au=Wu%2C+Hao-Chi&rft.au=Meng%2C+Jing-Hui&rft.au=Yan%2C+Wei-Mon&rft.date=2020-03-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=149&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.119217&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon