A sampling-based optimized algorithm for task-constrained motion planning

We consider a motion planning problem with task space constraints in a complex environment for redundant manipulators. For this problem, we propose a motion planning algorithm that combines kinematics control with rapidly exploring random sampling methods. Meanwhile, we introduce an optimization str...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced robotic systems Vol. 16; no. 3
Main Authors: Mi, Kai, Zhang, Haojian, Zheng, Jun, Hu, Jianhua, Zhuang, Dengxiang, Wang, Yunkuan
Format: Journal Article
Language:English
Published: London, England SAGE Publications 01.05.2019
Sage Publications Ltd
SAGE Publishing
Subjects:
ISSN:1729-8806, 1729-8814
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider a motion planning problem with task space constraints in a complex environment for redundant manipulators. For this problem, we propose a motion planning algorithm that combines kinematics control with rapidly exploring random sampling methods. Meanwhile, we introduce an optimization structure similar to dynamic programming into the algorithm. The proposed algorithm can generate an asymptotically optimized smooth path in joint space, which continuously satisfies task space constraints and avoids obstacles. We have confirmed that the proposed algorithm is probabilistically complete and asymptotically optimized. Finally, we conduct multiple experiments with path length and tracking error as optimization targets and the planning results reflect the optimization effect of the algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1729-8806
1729-8814
DOI:10.1177/1729881419847378