Sampling/stochastic dynamic programming for optimal operation of multi-purpose reservoirs using artificial neural network-based ensemble streamflow predictions
Due to limited water resources and the increasing demand for agricultural products, it is significantly important to operate surface water reservoirs optimally, especially those located in arid and semi-arid regions. This paper investigates uncertainty-based optimal operation of a multi-purpose wate...
Gespeichert in:
| Veröffentlicht in: | Journal of hydroinformatics Jg. 16; H. 4; S. 907 - 921 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
IWA Publishing
01.01.2014
|
| Schlagworte: | |
| ISSN: | 1464-7141, 1465-1734 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Due to limited water resources and the increasing demand for agricultural products, it is significantly important to operate surface water reservoirs optimally, especially those located in arid and semi-arid regions. This paper investigates uncertainty-based optimal operation of a multi-purpose water reservoir system by using four optimization models. The models include dynamic programming (DP), stochastic DP (SDP) with inflow classification (SDP/Class), SDP with inflow scenarios (SDP/Scenario), and sampling SDP (SSDP) with historical scenarios (SSDP/Hist). The performance of the models was tested in Zayandeh-Rud Reservoir system in Iran by evaluating how their release policies perform in a simulation phase. While the SDP approaches were better than the DP approach, the SSDP/Hist model outperformed the other SDP models. We also assessed the effect of ensemble streamflow predictions (ESPs) that were generated by artificial neural networks on the performance of SSDP/Hist. Application of the models to the Zayandeh-Rud case study demonstrated that SSDP in combination with ESPs and the K-means technique, which was used to cluster a large number of ESPs, could be a promising approach for real-time reservoir operation. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1464-7141 1465-1734 |
| DOI: | 10.2166/hydro.2013.236 |