Introducing possibilistic logic in ILP for dealing with exceptions

In this paper we propose a new formalization of the inductive logic programming (ILP) problem for a better handling of exceptions. It is now encoded in first-order possibilistic logic. This allows us to handle exceptions by means of prioritized rules, thus taking lessons from non-monotonic reasoning...

Full description

Saved in:
Bibliographic Details
Published in:Artificial intelligence Vol. 171; no. 16; pp. 939 - 950
Main Authors: Serrurier, Mathieu, Prade, Henri
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.11.2007
Elsevier
Subjects:
ISSN:0004-3702, 1872-7921
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we propose a new formalization of the inductive logic programming (ILP) problem for a better handling of exceptions. It is now encoded in first-order possibilistic logic. This allows us to handle exceptions by means of prioritized rules, thus taking lessons from non-monotonic reasoning. Indeed, in classical first-order logic, the exceptions of the rules that constitute a hypothesis accumulate and classifying an example in two different classes, even if one is the right one, is not correct. The possibilistic formalization provides a sound encoding of non-monotonic reasoning that copes with rules with exceptions and prevents an example to be classified in more than one class. The benefits of our approach with respect to the use of first-order decision lists are pointed out. The possibilistic logic view of ILP problem leads to an optimization problem at the algorithmic level. An algorithm based on simulated annealing that in one turn computes the set of rules together with their priority levels is proposed. The reported experiments show that the algorithm is competitive to standard ILP approaches on benchmark examples.
AbstractList In this paper we propose a new formalization of the inductive logic programming (ILP) problem for a better handling of exceptions. It is now encoded in first-order possibilistic logic. This allows us to handle exceptions by means of prioritized rules, thus taking lessons from non-monotonic reasoning. Indeed, in classical first-order logic, the exceptions of the rules that constitute a hypothesis accumulate and classifying an example in two different classes, even if one is the right one, is not correct. The possibilistic formalization provides a sound encoding of non-monotonic reasoning that copes with rules with exceptions and prevents an example to be classified in more than one class. The benefits of our approach with respect to the use of first-order decision lists are pointed out. The possibilistic logic view of ILP problem leads to an optimization problem at the algorithmic level. An algorithm based on simulated annealing that in one turn computes the set of rules together with their priority levels is proposed. The reported experiments show that the algorithm is competitive to standard ILP approaches on benchmark examples.
Author Prade, Henri
Serrurier, Mathieu
Author_xml – sequence: 1
  givenname: Mathieu
  surname: Serrurier
  fullname: Serrurier, Mathieu
  email: serrurie@irit.fr
– sequence: 2
  givenname: Henri
  surname: Prade
  fullname: Prade, Henri
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19237873$$DView record in Pascal Francis
https://hal.science/hal-03033452$$DView record in HAL
BookMark eNp9kL1OwzAURi0EEi3wBgxZGBgSru0kThiQCuKnUiUYYLYcx4FbBaeyTYG3x1FQBwYWW_50zrXuNyf7drCGkFMKGQVaXqwz5QLakDEAkUGexXCPzGglWCpqRvfJDADylAtgh2Tu_To-eV3TGble2uCG9kOjfU02g_fYYI8-oE764TWeaJPl6inpBpe0RvUj9onhLTFf2mwCDtYfk4NO9d6c_N5H5OXu9vnmIV093i9vFqtUx39DWla8hka3NeS8qTjVHTSiLFhbGt4UVDVcl01e8Y5x4J1grITaQFOIrohsRfkROZ_mvqlebhy-K_ctB4XyYbGSYwZR5HnBtiN7NrEb5bXqO6esRr-zaM24qASP3OXEaRd3d6aTGoMa1wpOYS8pyLFhuZZTw3JsWEIuYxjl_I-8m_-_djVpJpa1ReOk12isNi06o4NsB_x_wA-Eg5hD
CODEN AINTBB
CitedBy_id crossref_primary_10_1016_j_fss_2024_109259
crossref_primary_10_1016_j_ijar_2023_109028
crossref_primary_10_1016_j_ijar_2024_109206
crossref_primary_10_1007_s10618_009_0131_8
crossref_primary_10_1109_TFUZZ_2008_2005490
crossref_primary_10_1016_j_knosys_2010_04_011
crossref_primary_10_1016_j_eswa_2023_119552
Cites_doi 10.1145/959242.959247
10.1613/jair.105
10.1023/A:1007571119753
10.1093/logcom/9.6.873
10.1016/S0004-3702(99)00054-5
10.1023/A:1009867806624
10.1007/3-540-45402-0_5
10.1002/j.1538-7305.1965.tb04146.x
10.1007/BF03037227
10.1007/BF00058680
10.1016/B978-0-934613-64-4.50040-2
ContentType Journal Article
Copyright 2007 Elsevier B.V.
2008 INIST-CNRS
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2007 Elsevier B.V.
– notice: 2008 INIST-CNRS
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
1XC
DOI 10.1016/j.artint.2007.04.016
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-7921
EndPage 950
ExternalDocumentID oai:HAL:hal-03033452v1
19237873
10_1016_j_artint_2007_04_016
S0004370207000914
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
6TJ
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAKPC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACWUS
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEFWE
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
KQ8
LG9
LY7
M41
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
TR2
TWZ
UPT
UQL
VQA
WH7
WUQ
XFK
XJE
XJT
XPP
XSW
ZMT
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
1XC
ID FETCH-LOGICAL-c370t-68390bcd9043b831cf0b7652d6e3b51ab3c6b483f2303f722609e0b57f51cf813
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000251782300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-3702
IngestDate Tue Nov 25 06:20:26 EST 2025
Mon Jul 21 09:11:54 EDT 2025
Tue Nov 18 22:36:29 EST 2025
Sat Nov 29 06:08:05 EST 2025
Fri Feb 23 02:31:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Inductive logic programming
Possibilistic logic
Non-monotonic reasoning
Exception handling
Priority
Algorithmics
Competitive algorithms
Circumscription
Possibility theory
First order logic
Simulated annealing
Artificial intelligence
Mathematical programming
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-68390bcd9043b831cf0b7652d6e3b51ab3c6b483f2303f722609e0b57f51cf813
ORCID 0000-0002-8959-1091
0000-0003-4586-8527
OpenAccessLink https://dx.doi.org/10.1016/j.artint.2007.04.016
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_03033452v1
pascalfrancis_primary_19237873
crossref_citationtrail_10_1016_j_artint_2007_04_016
crossref_primary_10_1016_j_artint_2007_04_016
elsevier_sciencedirect_doi_10_1016_j_artint_2007_04_016
PublicationCentury 2000
PublicationDate 2007-11-01
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Artificial intelligence
PublicationYear 2007
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References M. Serrurier, H. Prade, Gérer les exceptions en programmation logique inductive multiclasse avec la logique possibiliste, in: 15ème Congrès Francophone AFRIF-AFIA de Reconnaissance des Formes et d'Intelligence Artificielle, RFIA'06, tours, France, 2006
Dietterich, Bakiri (bib023) 1995; 2
A. Srinivasan, The aleph manual, Tech. rep., Oxford University Computing Laboratory, Oxford, 2000
E. Lamma, F. Riguzzi, L.M. Pereira, Learning three-valued logic programs, in: S. Dzeroski, P. Flach (Eds.), ILP-99 Late-Breaking Papers, 1999, pp. 30–35
Dubois, Lang, Prade (bib006) 1994
Blockeel, Raedt, Jacobs, Demoen (bib018) 1999; 3
Snow (bib027) 1999; 113
Wrobel (bib012) 1993; vol. 667
Serrurier, Prade, Richard (bib020) 2004; vol. 3194
Ferri, Flach, Hernandez-Orallo (bib030) 2002
Kietz (bib034) 2002
Califf (bib009) 2002
Muggleton, Raedt (bib001) 1994; 19
Muggleton (bib002) 1995; 13
Khardon (bib003) 2000
Eineborg, Boström (bib024) 2001; vol. 2157
Rivest (bib007) 1987; 2
C. Sakama, Nonmonotonic inductive logic programming, in: 6th International Conference on Logic Programming and Nonmonotonic Reasoning, vol. 2173, 2001, pp. 62–79
S. Muggleton, W. Buntine, Machine invention of first order predicates by inverting resolution, in: Proceedings of the Fifth International Conference on Machine Learning (ICML 88), 1988, pp. 339–351
Khardon (bib008) 1999; 35
Serrurier, Prade (bib029) 2005; vol. 3571
S. Sinthupinyo, C. Nattee, T. Okada, B. Kijsirikul, Combining partial rules and winnow algorithm: results on classification of dopamine antagonist molecules, in: Proceedings of the 3rd International Workshop on Active Mining, 2004, pp. 83–92
A. Srinivasan, S.M.M. Bain, Distinguishing exceptions from noise in non-monotonic learning, in: S. Muggleton (Ed.), Proceedings of the 2nd International Workshop on Inductive Logic Programming, 1992
H. Lodhi, S. Muggleton, Is mutagenesis still challenging, in: ILP-05 Late-Breaking Papers, 2005, pp. 35–40
De Raedt, Kersting (bib026) 2003; 5
Benferhat, Dubois, Prade (bib019) 1999; 9
Džeroski, Schulze-Kremer, Heidtke, Siems, Wettschereck (bib033) 1996; vol. 1314
S. Benferhat, D. Dubois, H. Prade, Representing default rules in possibilistic logic, in: Proceedings of the 11th International Conference of on Principles of Knowledge Representation and Reasoning KR92, 1992, pp. 673–684
T. Horvath, P. Vojtas, GAP—rule discovery for graded classification, in: Working Notes of the ECML/PKDD 04 Workshop on Advances in Inductive Rule Learning, 2004
M. Serrurier, H. Prade, Coping with exceptions in multiclass ILP problems using possibilistic logic, in: Proc of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), 2005, pp. 1761–1764
Lin (bib021) 1965; 44
A. Srinivasan, R. King, S. Muggleton, The role of background knowledge: using a problem from chemistry to examine the performance of an ILP program, Tech. Rep. PRG-TR-08-99, Oxford University Computing Laboratory, Oxford, 1999
Martin, Vrain (bib013) 1996
Bain, Muggleton (bib010) 1991
10.1016/j.artint.2007.04.016_bib004
10.1016/j.artint.2007.04.016_bib005
10.1016/j.artint.2007.04.016_bib025
Rivest (10.1016/j.artint.2007.04.016_bib007) 1987; 2
10.1016/j.artint.2007.04.016_bib022
De Raedt (10.1016/j.artint.2007.04.016_bib026) 2003; 5
Khardon (10.1016/j.artint.2007.04.016_bib008) 1999; 35
Snow (10.1016/j.artint.2007.04.016_bib027) 1999; 113
Dubois (10.1016/j.artint.2007.04.016_bib006) 1994
Bain (10.1016/j.artint.2007.04.016_bib010) 1991
10.1016/j.artint.2007.04.016_bib028
Serrurier (10.1016/j.artint.2007.04.016_bib020) 2004; vol. 3194
Califf (10.1016/j.artint.2007.04.016_bib009) 2002
Benferhat (10.1016/j.artint.2007.04.016_bib019) 1999; 9
Eineborg (10.1016/j.artint.2007.04.016_bib024) 2001; vol. 2157
10.1016/j.artint.2007.04.016_bib015
10.1016/j.artint.2007.04.016_bib016
10.1016/j.artint.2007.04.016_bib014
10.1016/j.artint.2007.04.016_bib011
Serrurier (10.1016/j.artint.2007.04.016_bib029) 2005; vol. 3571
Wrobel (10.1016/j.artint.2007.04.016_bib012) 1993; vol. 667
10.1016/j.artint.2007.04.016_bib031
Muggleton (10.1016/j.artint.2007.04.016_bib002) 1995; 13
10.1016/j.artint.2007.04.016_bib032
Muggleton (10.1016/j.artint.2007.04.016_bib001) 1994; 19
Džeroski (10.1016/j.artint.2007.04.016_bib033) 1996; vol. 1314
10.1016/j.artint.2007.04.016_bib017
Blockeel (10.1016/j.artint.2007.04.016_bib018) 1999; 3
Dietterich (10.1016/j.artint.2007.04.016_bib023) 1995; 2
Khardon (10.1016/j.artint.2007.04.016_bib003) 2000
Lin (10.1016/j.artint.2007.04.016_bib021) 1965; 44
Kietz (10.1016/j.artint.2007.04.016_bib034) 2002
Martin (10.1016/j.artint.2007.04.016_bib013) 1996
Ferri (10.1016/j.artint.2007.04.016_bib030) 2002
References_xml – volume: 19
  start-page: 629
  year: 1994
  end-page: 680
  ident: bib001
  article-title: Inductive logic programming: Theory and methods
  publication-title: New Generation Computing
– start-page: 219
  year: 1996
  end-page: 235
  ident: bib013
  article-title: A three-valued framework for the induction of general logic programs
  publication-title: Advances in Inductive Logic Programming
– volume: 113
  start-page: 269
  year: 1999
  end-page: 279
  ident: bib027
  article-title: Diverse confidence levels in a probabilistic semantics for conditional logics
  publication-title: Artif. Intell.
– reference: T. Horvath, P. Vojtas, GAP—rule discovery for graded classification, in: Working Notes of the ECML/PKDD 04 Workshop on Advances in Inductive Rule Learning, 2004
– reference: A. Srinivasan, R. King, S. Muggleton, The role of background knowledge: using a problem from chemistry to examine the performance of an ILP program, Tech. Rep. PRG-TR-08-99, Oxford University Computing Laboratory, Oxford, 1999
– reference: M. Serrurier, H. Prade, Coping with exceptions in multiclass ILP problems using possibilistic logic, in: Proc of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), 2005, pp. 1761–1764
– volume: vol. 3571
  start-page: 675
  year: 2005
  end-page: 686
  ident: bib029
  article-title: Possibilistic inductive logic programming
  publication-title: Proceedings of European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU'05)
– start-page: 117
  year: 2002
  end-page: 132
  ident: bib034
  article-title: Learnability of description logic programs
  publication-title: Proceedings of the 12th Inter. Conference of Inductive Logic Programming, ILP 2002
– reference: C. Sakama, Nonmonotonic inductive logic programming, in: 6th International Conference on Logic Programming and Nonmonotonic Reasoning, vol. 2173, 2001, pp. 62–79
– reference: A. Srinivasan, The aleph manual, Tech. rep., Oxford University Computing Laboratory, Oxford, 2000
– volume: 13
  start-page: 245
  year: 1995
  end-page: 286
  ident: bib002
  article-title: Inverse entailment and Progol
  publication-title: New Generation Computing
– volume: 5
  start-page: 31
  year: 2003
  end-page: 48
  ident: bib026
  article-title: Probabilistic logic learning
  publication-title: SIGKDD Explor. Newsl.
– volume: vol. 3194
  start-page: 288
  year: 2004
  end-page: 304
  ident: bib020
  article-title: A simulated annealing framework for ILP
  publication-title: Proceedings of ILP 2004
– volume: 9
  start-page: 873
  year: 1999
  end-page: 895
  ident: bib019
  article-title: Possibilistic and standard probabilistic semantics of conditional knowledge bases
  publication-title: Journal of Logic and Computation
– start-page: 471
  year: 2000
  end-page: 478
  ident: bib003
  article-title: Learning Horn expressions with LogAn-H
  publication-title: Proceedings of the 7th International Conference on Machine Learning, ICML '00
– volume: 44
  start-page: 2245
  year: 1965
  end-page: 2269
  ident: bib021
  article-title: Computer solutions of the traveling salesman problem
  publication-title: Bell System Technical Journal
– volume: 3
  start-page: 59
  year: 1999
  end-page: 93
  ident: bib018
  article-title: Scaling up inductive logic programming by learning from interpretations
  publication-title: Data Mining and Knowledge Discovery
– start-page: 105
  year: 1991
  end-page: 119
  ident: bib010
  article-title: Non-monotonic learning
  publication-title: Machine Intelligence 12
– reference: S. Sinthupinyo, C. Nattee, T. Okada, B. Kijsirikul, Combining partial rules and winnow algorithm: results on classification of dopamine antagonist molecules, in: Proceedings of the 3rd International Workshop on Active Mining, 2004, pp. 83–92
– reference: S. Muggleton, W. Buntine, Machine invention of first order predicates by inverting resolution, in: Proceedings of the Fifth International Conference on Machine Learning (ICML 88), 1988, pp. 339–351
– start-page: 439
  year: 1994
  end-page: 513
  ident: bib006
  article-title: Possibilistic logic
  publication-title: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3
– volume: 35
  start-page: 57
  year: 1999
  end-page: 90
  ident: bib008
  article-title: Learning to take actions
  publication-title: Machine Learning
– reference: E. Lamma, F. Riguzzi, L.M. Pereira, Learning three-valued logic programs, in: S. Dzeroski, P. Flach (Eds.), ILP-99 Late-Breaking Papers, 1999, pp. 30–35
– volume: 2
  start-page: 229
  year: 1987
  end-page: 246
  ident: bib007
  article-title: Learning decision lists
  publication-title: Machine Learning
– reference: M. Serrurier, H. Prade, Gérer les exceptions en programmation logique inductive multiclasse avec la logique possibiliste, in: 15ème Congrès Francophone AFRIF-AFIA de Reconnaissance des Formes et d'Intelligence Artificielle, RFIA'06, tours, France, 2006
– volume: 2
  start-page: 263
  year: 1995
  end-page: 286
  ident: bib023
  article-title: Solving multiclass learning problems by error-correcting output codes
  publication-title: Journal of Artificial Intelligence Research
– volume: vol. 2157
  start-page: 41
  year: 2001
  end-page: 50
  ident: bib024
  article-title: Classifying uncovered examples by rule stretching
  publication-title: Proceedings of the 11th International Conference on Inductive Logic Programming
– volume: vol. 1314
  start-page: 41
  year: 1996
  end-page: 54
  ident: bib033
  article-title: Applying ILP to diterpene structure elucidation from
  publication-title: Proceedings of the 6th International Workshop on Inductive Logic Programming
– reference: A. Srinivasan, S.M.M. Bain, Distinguishing exceptions from noise in non-monotonic learning, in: S. Muggleton (Ed.), Proceedings of the 2nd International Workshop on Inductive Logic Programming, 1992
– volume: vol. 667
  start-page: 65
  year: 1993
  end-page: 82
  ident: bib012
  article-title: On the proper definition of minimality in specialization and theory revision
  publication-title: Machine Learning: ECML-93
– start-page: 17
  year: 2002
  end-page: 31
  ident: bib009
  article-title: Efficient and effective induction of first order decision lists
  publication-title: Proceedings of the 12th International Conference of Inductive Logic Programming, ILP 2002
– reference: S. Benferhat, D. Dubois, H. Prade, Representing default rules in possibilistic logic, in: Proceedings of the 11th International Conference of on Principles of Knowledge Representation and Reasoning KR92, 1992, pp. 673–684
– start-page: 139
  year: 2002
  end-page: 146
  ident: bib030
  article-title: Learning decision trees using the area under the roc curve
  publication-title: Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002)
– reference: H. Lodhi, S. Muggleton, Is mutagenesis still challenging, in: ILP-05 Late-Breaking Papers, 2005, pp. 35–40
– ident: 10.1016/j.artint.2007.04.016_bib014
– volume: vol. 3194
  start-page: 288
  year: 2004
  ident: 10.1016/j.artint.2007.04.016_bib020
  article-title: A simulated annealing framework for ILP
– volume: 5
  start-page: 31
  issue: 1
  year: 2003
  ident: 10.1016/j.artint.2007.04.016_bib026
  article-title: Probabilistic logic learning
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/959242.959247
– volume: vol. 3571
  start-page: 675
  year: 2005
  ident: 10.1016/j.artint.2007.04.016_bib029
  article-title: Possibilistic inductive logic programming
– start-page: 105
  year: 1991
  ident: 10.1016/j.artint.2007.04.016_bib010
  article-title: Non-monotonic learning
– start-page: 139
  year: 2002
  ident: 10.1016/j.artint.2007.04.016_bib030
  article-title: Learning decision trees using the area under the roc curve
– ident: 10.1016/j.artint.2007.04.016_bib004
– volume: 2
  start-page: 263
  year: 1995
  ident: 10.1016/j.artint.2007.04.016_bib023
  article-title: Solving multiclass learning problems by error-correcting output codes
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.105
– ident: 10.1016/j.artint.2007.04.016_bib025
– volume: 35
  start-page: 57
  year: 1999
  ident: 10.1016/j.artint.2007.04.016_bib008
  article-title: Learning to take actions
  publication-title: Machine Learning
  doi: 10.1023/A:1007571119753
– volume: vol. 1314
  start-page: 41
  year: 1996
  ident: 10.1016/j.artint.2007.04.016_bib033
  article-title: Applying ILP to diterpene structure elucidation from 13C NMR spectra
– start-page: 17
  year: 2002
  ident: 10.1016/j.artint.2007.04.016_bib009
  article-title: Efficient and effective induction of first order decision lists
– start-page: 439
  year: 1994
  ident: 10.1016/j.artint.2007.04.016_bib006
  article-title: Possibilistic logic
– ident: 10.1016/j.artint.2007.04.016_bib031
– ident: 10.1016/j.artint.2007.04.016_bib016
– start-page: 219
  year: 1996
  ident: 10.1016/j.artint.2007.04.016_bib013
  article-title: A three-valued framework for the induction of general logic programs
– ident: 10.1016/j.artint.2007.04.016_bib011
– volume: 9
  start-page: 873
  issue: 6
  year: 1999
  ident: 10.1016/j.artint.2007.04.016_bib019
  article-title: Possibilistic and standard probabilistic semantics of conditional knowledge bases
  publication-title: Journal of Logic and Computation
  doi: 10.1093/logcom/9.6.873
– volume: vol. 667
  start-page: 65
  year: 1993
  ident: 10.1016/j.artint.2007.04.016_bib012
  article-title: On the proper definition of minimality in specialization and theory revision
– volume: 113
  start-page: 269
  issue: 1–2
  year: 1999
  ident: 10.1016/j.artint.2007.04.016_bib027
  article-title: Diverse confidence levels in a probabilistic semantics for conditional logics
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(99)00054-5
– volume: vol. 2157
  start-page: 41
  year: 2001
  ident: 10.1016/j.artint.2007.04.016_bib024
  article-title: Classifying uncovered examples by rule stretching
– volume: 3
  start-page: 59
  year: 1999
  ident: 10.1016/j.artint.2007.04.016_bib018
  article-title: Scaling up inductive logic programming by learning from interpretations
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009867806624
– ident: 10.1016/j.artint.2007.04.016_bib005
– ident: 10.1016/j.artint.2007.04.016_bib015
  doi: 10.1007/3-540-45402-0_5
– start-page: 117
  year: 2002
  ident: 10.1016/j.artint.2007.04.016_bib034
  article-title: Learnability of description logic programs
– ident: 10.1016/j.artint.2007.04.016_bib028
– volume: 44
  start-page: 2245
  year: 1965
  ident: 10.1016/j.artint.2007.04.016_bib021
  article-title: Computer solutions of the traveling salesman problem
  publication-title: Bell System Technical Journal
  doi: 10.1002/j.1538-7305.1965.tb04146.x
– volume: 13
  start-page: 245
  year: 1995
  ident: 10.1016/j.artint.2007.04.016_bib002
  article-title: Inverse entailment and Progol
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– volume: 2
  start-page: 229
  year: 1987
  ident: 10.1016/j.artint.2007.04.016_bib007
  article-title: Learning decision lists
  publication-title: Machine Learning
  doi: 10.1007/BF00058680
– ident: 10.1016/j.artint.2007.04.016_bib022
  doi: 10.1016/B978-0-934613-64-4.50040-2
– ident: 10.1016/j.artint.2007.04.016_bib032
– volume: 19
  start-page: 629
  issue: 20
  year: 1994
  ident: 10.1016/j.artint.2007.04.016_bib001
  article-title: Inductive logic programming: Theory and methods
  publication-title: New Generation Computing
– start-page: 471
  year: 2000
  ident: 10.1016/j.artint.2007.04.016_bib003
  article-title: Learning Horn expressions with LogAn-H
– ident: 10.1016/j.artint.2007.04.016_bib017
SSID ssj0003991
Score 1.9927758
Snippet In this paper we propose a new formalization of the inductive logic programming (ILP) problem for a better handling of exceptions. It is now encoded in...
SourceID hal
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 939
SubjectTerms Applied sciences
Artificial intelligence
Computer Science
Computer science; control theory; systems
Exact sciences and technology
Inductive logic programming
Learning and adaptive systems
Machine Learning
Non-monotonic reasoning
Possibilistic logic
Title Introducing possibilistic logic in ILP for dealing with exceptions
URI https://dx.doi.org/10.1016/j.artint.2007.04.016
https://hal.science/hal-03033452
Volume 171
WOSCitedRecordID wos000251782300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVbuofB6L5Zuq2IsbfhYluyJT1mo6MZoRTWQd6MJcs0pbjBcUp-_q4-rDgLo9tgLyYIO7J1r6-O5HvPQegjTcukzGRuMtVURBPJIqmsmBlNFeUxIdqSuM7Y-Tmfz8WFr7heWTkB1jR8sxHL_2pqaANjm9LZvzB3-FNogN9gdDiC2eH4R4afmtzzaq1smfntyqW_GjbmTzbMmQ2O6ezCphdWgBLDZqze9BkuQ8A6aW0ykZX2GLB3ho0Z3bZW9M7V_XRXC70O0bb1nL6mEGKxs73AfJ1d2PPaq3vxcZRCaIpdHNUudHIGWF24eucQW52-Su9Ew1ApHImRn3WFo5_dC-hub-H6xHIqdJ5ykp7EyS_82XZG_m4_bMJtQRwD7Gj0zQ9Slgk-QgeT6en8W5ijAZZ5LUX3HH1Rpc382-_rd6Dl4ZXJnn2yLFfwQtVOCWUATy6foUO_rsAT5w_P0QPdvEBPe80O7EP4S_R54B54xz2wdQ-8aDC4Bwb3wN49sHEPvHWPV-jH19PLL2eR19GIFDxbF-UAgmOpKgGDIzlJVB1LlmdplWsis6SUROWSclLDcpTUDAB5LHQsM1ZncC5PyGs0am4b_QbhLC4TDZAPVjmwcK1qnlUJrWVeC6VSovMxIv1AFcqTzButk5uizya8LtzwGv1TVsS0gMYxisJVS0eycs_5rLdB4YGiA4AFuM09V34Ak4VODLf62WRWmDaY7QihWXqXjNHxjkW39wSrIZjgyNE_9_8WPd6-ZO_QqGvX-j16pO66xao99l76Ez0dpFM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Introducing+possibilistic+logic+in+ILP+for+dealing+with+exceptions&rft.jtitle=Artificial+intelligence&rft.au=Serrurier%2C+Mathieu&rft.au=Prade%2C+Henri&rft.date=2007-11-01&rft.pub=Elsevier+B.V&rft.issn=0004-3702&rft.eissn=1872-7921&rft.volume=171&rft.issue=16&rft.spage=939&rft.epage=950&rft_id=info:doi/10.1016%2Fj.artint.2007.04.016&rft.externalDocID=S0004370207000914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3702&client=summon