Series-Parallel Charge Pump Conditioning Circuits for Electrostatic Kinetic Energy Harvesting

This paper presents a new family of conditioning circuits used in electrostatic kinetic energy harvesters (e-KEHs), generalizing a previously reported conditioning circuit known as the Bennet's doubler. The proposed topology implements a conditioning scheme described by a rectangular charge-vol...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. I, Regular papers Vol. 64; no. 1; pp. 227 - 240
Main Authors: Karami, Armine, Galayko, Dimitri, Basset, Philippe
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1549-8328, 1558-0806
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a new family of conditioning circuits used in electrostatic kinetic energy harvesters (e-KEHs), generalizing a previously reported conditioning circuit known as the Bennet's doubler. The proposed topology implements a conditioning scheme described by a rectangular charge-voltage cycle (QV-cycle) of tunable aspect ratio. These circuits show an exponential increase of the converted energy over operation time if studied in the sole electrical domain. The QV-cycle's aspect ratio can be set to values that were previously inaccessible with other exponential conditioning circuits. After a brief intuitive presentation of the new topology, its operation is rigorously analyzed and its dynamics are quantitatively derived in the electrical domain. In particular, the aspect ratio of the rectangular QV-cycle describing the biasing scheme of the transducer is expressed as a function of the circuit's parameters. Practical considerations about the use of the reported conditioning circuits in actual e-KEHs are also presented. These include a discussion on the applications of the proposed conditioning, a description of the effects of electrical nonidealities, and a proposition of an energy extracting interface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2016.2603064