An inexact Newton method combined with Hestenes multipliers’ scheme for the solution of Karush–Kuhn–Tucker systems

In this work a Newton interior-point method for the solution of Karush–Kuhn–Tucker systems is presented. A crucial feature of this iterative method is the solution, at each iteration, of the inner subproblem. This subproblem is a linear-quadratic programming problem, that can solved approximately by...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation Vol. 168; no. 1; pp. 651 - 676
Main Authors: Bonettini, Silvia, Galligani, Emanuele, Ruggiero, Valeria
Format: Journal Article
Language:English
Published: New York, NY Elsevier Inc 01.09.2005
Elsevier
Subjects:
ISSN:0096-3003, 1873-5649
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work a Newton interior-point method for the solution of Karush–Kuhn–Tucker systems is presented. A crucial feature of this iterative method is the solution, at each iteration, of the inner subproblem. This subproblem is a linear-quadratic programming problem, that can solved approximately by an inner iterative method such as the Hestenes multipliers’ method. A deep analysis on the choices of the parameters of the method (perturbation and damping parameters) has been done. The global convergence of the Newton interior-point method is proved when it is viewed as an inexact Newton method for the solution of nonlinear systems with restriction on the sign of some variables. The Newton interior-point method is numerically evaluated on large scale test problems arising from elliptic optimal control problems which show the effectiveness of the approach.
AbstractList In this work a Newton interior-point method for the solution of Karush–Kuhn–Tucker systems is presented. A crucial feature of this iterative method is the solution, at each iteration, of the inner subproblem. This subproblem is a linear-quadratic programming problem, that can solved approximately by an inner iterative method such as the Hestenes multipliers’ method. A deep analysis on the choices of the parameters of the method (perturbation and damping parameters) has been done. The global convergence of the Newton interior-point method is proved when it is viewed as an inexact Newton method for the solution of nonlinear systems with restriction on the sign of some variables. The Newton interior-point method is numerically evaluated on large scale test problems arising from elliptic optimal control problems which show the effectiveness of the approach.
Author Galligani, Emanuele
Ruggiero, Valeria
Bonettini, Silvia
Author_xml – sequence: 1
  givenname: Silvia
  surname: Bonettini
  fullname: Bonettini, Silvia
  email: bonettini.silvia@unimo.it
  organization: Dipartimento di Matematica, Università di Modena e Reggio Emilia, Via Campi 213/b, 41100 Modena, Italy
– sequence: 2
  givenname: Emanuele
  surname: Galligani
  fullname: Galligani, Emanuele
  email: galligan@unimo.it
  organization: Dipartimento di Matematica, Università di Modena e Reggio Emilia, Via Campi 213/b, 41100 Modena, Italy
– sequence: 3
  givenname: Valeria
  surname: Ruggiero
  fullname: Ruggiero, Valeria
  email: rgv@dns.unife.it
  organization: Dipartimento di Matematica, Università di Ferrara, Via Machiavelli 35, 44100 Ferrara, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17439066$$DView record in Pascal Francis
BookMark eNp9kDFu3DAQRYnABrK2c4B0bFJKHi61ooRUhpHEho2kcWqCGo4gbiRqQVKx3fkOqXw9n8RcbJAihatfzLwP_HfCjvzsibGPAkoBoj7flmbCcg1QldCWIJp3bCUaJYtNXbVHbAXQ1oUEkO_ZSYxbAFC1qFbs4cJz5-nBYOLf6T7Nnk-UhtlynKcuXyy_d2ngVxQTeYp8WsbkdqOjEF-ennnEgSbi_Rx4GojHeVySyyVzz29MWOLw8vTnZhl8jrsFf1Hg8TE3TfGMHfdmjPThb56yn1-_3F1eFbc_vl1fXtwWKBWkooYNtpVA6G3Xdo3ddK2iqpEdWtkDWYXYNNauO6WkQmWM7dbNRlmJUkjqOnnKPh16dyaiGftgPLqod8FNJjxqoSrZQl3nP3X4wzDHGKjX6JLZb0nBuFEL0HvRequzaL0XraHVWXQmxX_kv_I3mM8HhvL031mmjujII1kXCJO2s3uDfgWqb55P
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1016_j_cam_2009_02_020
Cites_doi 10.1023/A:1017523228692
10.1023/B:JOTA.0000012969.51013.2c
10.1023/A:1004624721836
10.1137/0804022
10.1007/BF02275347
10.1137/0614019
10.1137/0719025
10.1016/S0377-0427(00)00309-5
10.1023/A:1008725519350
10.1007/BF02844922
10.1023/A:1008677427361
10.1023/A:1008774521095
10.1007/BF01585660
ContentType Journal Article
Copyright 2004 Elsevier Inc.
2006 INIST-CNRS
Copyright_xml – notice: 2004 Elsevier Inc.
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2004.09.018
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 676
ExternalDocumentID 17439066
10_1016_j_amc_2004_09_018
S0096300304006307
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
GBLVA
HLZ
HMJ
HVGLF
P-8
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c370t-605c941c0fdb9b8d5b97e483bcd3f0ed7cc88dd2b7737c7aadb2857d3c313ebb3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000232501300048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Mon Jul 21 09:15:44 EDT 2025
Tue Nov 18 22:29:40 EST 2025
Sat Nov 29 02:46:06 EST 2025
Fri Feb 23 02:29:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Elliptic control problems
Newton interior-point method
Inexact Newton method
Large scale nonlinear programming problems
Hestenes multipliers’ method
Damping
Hestenes method
Interior point method
Iterative method
Linear programming
Non linear programming
Quadratic programming
Non linear system
Convergence
Perturbation method
Numerical analysis
Applied mathematics
Perturbation techniques
Hestenes multipliers' method
Multiplier
Large scale
Newton method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-605c941c0fdb9b8d5b97e483bcd3f0ed7cc88dd2b7737c7aadb2857d3c313ebb3
OpenAccessLink http://hdl.handle.net/11380/452951
PageCount 26
ParticipantIDs pascalfrancis_primary_17439066
crossref_citationtrail_10_1016_j_amc_2004_09_018
crossref_primary_10_1016_j_amc_2004_09_018
elsevier_sciencedirect_doi_10_1016_j_amc_2004_09_018
PublicationCentury 2000
PublicationDate 2005-09-01
PublicationDateYYYYMMDD 2005-09-01
PublicationDate_xml – month: 09
  year: 2005
  text: 2005-09-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2005
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Durazzi, Ruggiero, Zanghirati (bib8) 2001; 110
Nocedal, Wright (bib19) 1999
Durazzi, Galligani (bib5) 2001; vol. 58
Saad (bib21) 1996
I.S. Duff, J.K. Reid, MA27-a set of Fortran subroutines for solving sparse symmetric sets of linear equations, Tech Report AERE R10533, HMSO, London, 1982.
Rheinboldt (bib20) 1998
El-Bakry, Tapia, Tsuchiya, Zhang (bib10) 1996; 89
Eisenstat, Walker (bib9) 1994; 4
Hestenes (bib13) 1975
Durazzi (bib4) 2000; 104
Liu, Ng, Peyton (bib14) 1993; 14
Vanderbei, Shanno (bib22) 1999; 13
Mittelmann, Maurer (bib18) 2000; 120
E. Galligani, Analysis of the convergence of an inexact Newton method for solving Karush–Kuhn–Tucker systems, Atti Sem. Matem. Fis. Univ. Modena, in press.
Maurer, Mittelmann (bib16) 2000; 16
Dennis, Schnabel (bib2) 1983
Durazzi, Ruggiero (bib6) 2004; 120
Dembo, Eisenstat, Steihaug (bib1) 1982; 19
Luenberger (bib15) 1984
Maurer, Mittelmann (bib17) 2001; 18
C. Durazzi, V. Ruggiero, A Newton inexact interior-point method for large scale nonlinear optimization problems, Annali Univ. Ferrara, Sez. VII, Sc. Matem. IL, (2003) 333–357.
Gould (bib12) 1985; 32
Maurer (10.1016/j.amc.2004.09.018_bib17) 2001; 18
Luenberger (10.1016/j.amc.2004.09.018_bib15) 1984
Rheinboldt (10.1016/j.amc.2004.09.018_bib20) 1998
Dembo (10.1016/j.amc.2004.09.018_bib1) 1982; 19
10.1016/j.amc.2004.09.018_bib7
Eisenstat (10.1016/j.amc.2004.09.018_bib9) 1994; 4
Durazzi (10.1016/j.amc.2004.09.018_bib8) 2001; 110
Durazzi (10.1016/j.amc.2004.09.018_bib5) 2001; vol. 58
10.1016/j.amc.2004.09.018_bib11
10.1016/j.amc.2004.09.018_bib3
El-Bakry (10.1016/j.amc.2004.09.018_bib10) 1996; 89
Dennis (10.1016/j.amc.2004.09.018_bib2) 1983
Durazzi (10.1016/j.amc.2004.09.018_bib6) 2004; 120
Saad (10.1016/j.amc.2004.09.018_bib21) 1996
Durazzi (10.1016/j.amc.2004.09.018_bib4) 2000; 104
Mittelmann (10.1016/j.amc.2004.09.018_bib18) 2000; 120
Maurer (10.1016/j.amc.2004.09.018_bib16) 2000; 16
Hestenes (10.1016/j.amc.2004.09.018_bib13) 1975
Nocedal (10.1016/j.amc.2004.09.018_bib19) 1999
Liu (10.1016/j.amc.2004.09.018_bib14) 1993; 14
Gould (10.1016/j.amc.2004.09.018_bib12) 1985; 32
Vanderbei (10.1016/j.amc.2004.09.018_bib22) 1999; 13
References_xml – volume: 89
  start-page: 507
  year: 1996
  end-page: 541
  ident: bib10
  article-title: On the formulation and theory of Newton interior-point method for nonlinear programming
  publication-title: J. Optim. Theory Appl.
– year: 1984
  ident: bib15
  article-title: Linear and Nonlinear Programming
– volume: 120
  start-page: 175
  year: 2000
  end-page: 195
  ident: bib18
  article-title: Solving elliptic control problems with interior point and SQP methods: control and state constraint
  publication-title: J. Comput. Appl. Math.
– volume: 120
  start-page: 199
  year: 2004
  end-page: 208
  ident: bib6
  article-title: Global convergence of the Newton interior-point method for nonlinear programming
  publication-title: J. Optim. Theory Appl.
– year: 1999
  ident: bib19
  article-title: Numerical Optimization
– volume: 4
  start-page: 393
  year: 1994
  end-page: 422
  ident: bib9
  article-title: Globally convergent inexact Newton methods
  publication-title: SIAM J. Optim.
– reference: E. Galligani, Analysis of the convergence of an inexact Newton method for solving Karush–Kuhn–Tucker systems, Atti Sem. Matem. Fis. Univ. Modena, in press.
– year: 1998
  ident: bib20
  article-title: Methods for Solving Systems of Nonlinear Equations
– volume: 13
  start-page: 231
  year: 1999
  end-page: 252
  ident: bib22
  article-title: An interior-point algorithm for nonconvex nonlinear programming
  publication-title: Comput. Optim. Appl.
– reference: I.S. Duff, J.K. Reid, MA27-a set of Fortran subroutines for solving sparse symmetric sets of linear equations, Tech Report AERE R10533, HMSO, London, 1982.
– reference: C. Durazzi, V. Ruggiero, A Newton inexact interior-point method for large scale nonlinear optimization problems, Annali Univ. Ferrara, Sez. VII, Sc. Matem. IL, (2003) 333–357.
– volume: 18
  start-page: 141
  year: 2001
  end-page: 160
  ident: bib17
  article-title: Optimization techniques for solving elliptic control problems with control and state constraints: Part 2. Distributed control
  publication-title: Comput. Optim. Appl.
– year: 1996
  ident: bib21
  article-title: Iterative Methods for Sparse Linear System
– volume: 32
  start-page: 90
  year: 1985
  end-page: 99
  ident: bib12
  article-title: On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem
  publication-title: Math. Program.
– year: 1975
  ident: bib13
  article-title: Optimization Theory. The Finite Dimensional Case
– volume: 19
  start-page: 400
  year: 1982
  end-page: 408
  ident: bib1
  article-title: Inexact Newton methods
  publication-title: SIAM J. Numer. Anal.
– year: 1983
  ident: bib2
  article-title: Numerical Methods for Unconstrained Optimization and Nonlinear Equations
– volume: 104
  start-page: 73
  year: 2000
  end-page: 90
  ident: bib4
  article-title: On the Newton interior-point method for nonlinear programming problems
  publication-title: J. Optim. Theory Appl.
– volume: 110
  start-page: 289
  year: 2001
  end-page: 313
  ident: bib8
  article-title: Parallel interior-point method for linear and quadratic programs with special structure
  publication-title: J. Optim. Theory Appl.
– volume: 16
  start-page: 29
  year: 2000
  end-page: 55
  ident: bib16
  article-title: Optimization techniques for solving elliptic control problems with control and state constraints: Part 1. Boundary control
  publication-title: Comput. Optim. Appl.
– volume: vol. 58
  start-page: 71
  year: 2001
  end-page: 99
  ident: bib5
  article-title: Nonlinear programming methods for solving optimal control problems
  publication-title: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models Nonconvex Optimization and Its Applications
– volume: 14
  start-page: 242
  year: 1993
  end-page: 252
  ident: bib14
  article-title: On finding supernodes for sparse matrix computations
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 110
  start-page: 289
  year: 2001
  ident: 10.1016/j.amc.2004.09.018_bib8
  article-title: Parallel interior-point method for linear and quadratic programs with special structure
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1017523228692
– year: 1984
  ident: 10.1016/j.amc.2004.09.018_bib15
– ident: 10.1016/j.amc.2004.09.018_bib11
– volume: 120
  start-page: 199
  year: 2004
  ident: 10.1016/j.amc.2004.09.018_bib6
  article-title: Global convergence of the Newton interior-point method for nonlinear programming
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/B:JOTA.0000012969.51013.2c
– volume: 104
  start-page: 73
  year: 2000
  ident: 10.1016/j.amc.2004.09.018_bib4
  article-title: On the Newton interior-point method for nonlinear programming problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1004624721836
– volume: 4
  start-page: 393
  year: 1994
  ident: 10.1016/j.amc.2004.09.018_bib9
  article-title: Globally convergent inexact Newton methods
  publication-title: SIAM J. Optim.
  doi: 10.1137/0804022
– volume: 89
  start-page: 507
  year: 1996
  ident: 10.1016/j.amc.2004.09.018_bib10
  article-title: On the formulation and theory of Newton interior-point method for nonlinear programming
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF02275347
– volume: 14
  start-page: 242
  year: 1993
  ident: 10.1016/j.amc.2004.09.018_bib14
  article-title: On finding supernodes for sparse matrix computations
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0614019
– year: 1998
  ident: 10.1016/j.amc.2004.09.018_bib20
– volume: 19
  start-page: 400
  year: 1982
  ident: 10.1016/j.amc.2004.09.018_bib1
  article-title: Inexact Newton methods
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0719025
– ident: 10.1016/j.amc.2004.09.018_bib3
– year: 1999
  ident: 10.1016/j.amc.2004.09.018_bib19
– volume: 120
  start-page: 175
  year: 2000
  ident: 10.1016/j.amc.2004.09.018_bib18
  article-title: Solving elliptic control problems with interior point and SQP methods: control and state constraint
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00309-5
– volume: 16
  start-page: 29
  year: 2000
  ident: 10.1016/j.amc.2004.09.018_bib16
  article-title: Optimization techniques for solving elliptic control problems with control and state constraints: Part 1. Boundary control
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1008725519350
– ident: 10.1016/j.amc.2004.09.018_bib7
  doi: 10.1007/BF02844922
– volume: 13
  start-page: 231
  year: 1999
  ident: 10.1016/j.amc.2004.09.018_bib22
  article-title: An interior-point algorithm for nonconvex nonlinear programming
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1008677427361
– year: 1996
  ident: 10.1016/j.amc.2004.09.018_bib21
– volume: vol. 58
  start-page: 71
  year: 2001
  ident: 10.1016/j.amc.2004.09.018_bib5
  article-title: Nonlinear programming methods for solving optimal control problems
– year: 1975
  ident: 10.1016/j.amc.2004.09.018_bib13
– year: 1983
  ident: 10.1016/j.amc.2004.09.018_bib2
– volume: 18
  start-page: 141
  year: 2001
  ident: 10.1016/j.amc.2004.09.018_bib17
  article-title: Optimization techniques for solving elliptic control problems with control and state constraints: Part 2. Distributed control
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1008774521095
– volume: 32
  start-page: 90
  year: 1985
  ident: 10.1016/j.amc.2004.09.018_bib12
  article-title: On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem
  publication-title: Math. Program.
  doi: 10.1007/BF01585660
SSID ssj0007614
Score 1.7848575
Snippet In this work a Newton interior-point method for the solution of Karush–Kuhn–Tucker systems is presented. A crucial feature of this iterative method is the...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 651
SubjectTerms Calculus of variations and optimal control
Elliptic control problems
Exact sciences and technology
Global analysis, analysis on manifolds
Hestenes multipliers’ method
Inexact Newton method
Large scale nonlinear programming problems
Mathematical analysis
Mathematics
Newton interior-point method
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Title An inexact Newton method combined with Hestenes multipliers’ scheme for the solution of Karush–Kuhn–Tucker systems
URI https://dx.doi.org/10.1016/j.amc.2004.09.018
Volume 168
WOSCitedRecordID wos000232501300048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZKxwUIIX7F-Jl8wRVTUBInsXNZUGEwmBAbqHeR4zhbpzar2qbq5d6BK56I99iTcJxjpy0TEyBxk7ZR7CQ9X-zjk-98h5DneRwwpWLtsTw2otqSeUKGqRcGUSk0B5c8bRKFP_CDAzEYpJ86nR8uF2Yx4lUllst08l9NDfvA2CZ19i_M3XYKO-A7GB22YHbY_pHhe4a7qJcm9xFGMKOagVWiDXsclsGObr5nAp0wzjlKYVMS2zIf0l1Y8-qxbjmI7oqNa7kvp_XsxB3K9uuTqv2BLA0rDz1bd3ydtztuZWJnLqVuUm_SAV6dVdqwsRueweFwtBi2U8dbaeRDsQzVbn8sq1qPWmR-ro-P4S6a2O9XmPemtp2LacQtacsG2lyyzQYX1Ky2POb7OB5qHK8FZ16coOppO6An4hJycXhOrLgtzvQJVp65NIlgPOP0pRw3GpcohGtniU1t7kNzTax5vdyIl_FrZCvkcSq6ZKv3rj943zoFPEGZeXcP7gV7QzX85US_c5FuTeQMHtwSK66suUFHd8htu36hPcTdXdLR1T1y8-PKqvfJsldRi0CKCKSIQOoQSA0CqUMgXUPgxfl3itijgD0KvVKHPXpWUsTexfk3gzr4QLxRi7cH5Mub_tHrPc8W-PAU4_7cg6W0SqNA-WWRp7ko4jzlOhIsVwUrfV1wpYQoijDnnHHFpSzyUMS8YIoFTOc5e0i6FWDyEaExizkPIi4Tv4ikUaHTofKLJAAnMGIy2Ca--08zZdXvTRGWUeZojqcZmMFUZY0yP82gh23yom0yQemXqw6OnKEy67uiT5oBqq5qtrNh1NWJTKAAlgOP_63fJ-TG6rl6Srrzaa2fketqMR_OpjsWnD8BzTfN_w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inexact+Newton+method+combined+with+Hestenes+multipliers%E2%80%99+scheme+for+the+solution+of+Karush%E2%80%93Kuhn%E2%80%93Tucker+systems&rft.jtitle=Applied+mathematics+and+computation&rft.au=Bonettini%2C+Silvia&rft.au=Galligani%2C+Emanuele&rft.au=Ruggiero%2C+Valeria&rft.date=2005-09-01&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=168&rft.issue=1&rft.spage=651&rft.epage=676&rft_id=info:doi/10.1016%2Fj.amc.2004.09.018&rft.externalDocID=S0096300304006307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon