An inexact Newton method combined with Hestenes multipliers’ scheme for the solution of Karush–Kuhn–Tucker systems

In this work a Newton interior-point method for the solution of Karush–Kuhn–Tucker systems is presented. A crucial feature of this iterative method is the solution, at each iteration, of the inner subproblem. This subproblem is a linear-quadratic programming problem, that can solved approximately by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 168; číslo 1; s. 651 - 676
Hlavní autoři: Bonettini, Silvia, Galligani, Emanuele, Ruggiero, Valeria
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.09.2005
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work a Newton interior-point method for the solution of Karush–Kuhn–Tucker systems is presented. A crucial feature of this iterative method is the solution, at each iteration, of the inner subproblem. This subproblem is a linear-quadratic programming problem, that can solved approximately by an inner iterative method such as the Hestenes multipliers’ method. A deep analysis on the choices of the parameters of the method (perturbation and damping parameters) has been done. The global convergence of the Newton interior-point method is proved when it is viewed as an inexact Newton method for the solution of nonlinear systems with restriction on the sign of some variables. The Newton interior-point method is numerically evaluated on large scale test problems arising from elliptic optimal control problems which show the effectiveness of the approach.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2004.09.018