Secrecy Sum-Rates for Multi-User MIMO Regularized Channel Inversion Precoding
In this paper, we propose a linear precoder for the downlink of a multi-user MIMO system with multiple users that potentially act as eavesdroppers. The proposed precoder is based on regularized channel inversion (RCI) with a regularization parameter α and power allocation vector chosen in such a way...
Saved in:
| Published in: | IEEE transactions on communications Vol. 60; no. 11; pp. 3472 - 3482 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.11.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0090-6778, 1558-0857 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we propose a linear precoder for the downlink of a multi-user MIMO system with multiple users that potentially act as eavesdroppers. The proposed precoder is based on regularized channel inversion (RCI) with a regularization parameter α and power allocation vector chosen in such a way that the achievable secrecy sum-rate is maximized. We consider the worst-case scenario for the multi-user MIMO system, where the transmitter assumes users cooperate to eavesdrop on other users. We derive the achievable secrecy sum-rate and obtain the closed-form expression for the optimal regularization parameter α LS of the precoder using large-system analysis. We show that the RCI precoder with α LS outperforms several other linear precoding schemes, and it achieves a secrecy sum-rate that has same scaling factor as the sum-rate achieved by the optimum RCI precoder without secrecy requirements. We propose a power allocation algorithm to maximize the secrecy sum-rate for fixed α. We then extend our algorithm to maximize the secrecy sum-rate by jointly optimizing α and the power allocation vector. The jointly optimized precoder outperforms RCI with α LS and equal power allocation by up to 20 percent at practical values of the signal-to-noise ratio and for 4 users and 4 transmit antennas. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0090-6778 1558-0857 |
| DOI: | 10.1109/TCOMM.2012.072612.110686 |