Sensitivity Operator Framework for Analyzing Heterogeneous Air Quality Monitoring Systems

Air quality monitoring systems differ in composition and accuracy of observations and their temporal and spatial coverage. A monitoring system’s performance can be assessed by evaluating the accuracy of the emission sources identified by its data. In the considered inverse modeling approach, a sourc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Atmosphere Ročník 12; číslo 12; s. 1697
Hlavní autoři: Penenko, Alexey, Penenko, Vladimir, Tsvetova, Elena, Gochakov, Alexander, Pyanova, Elza, Konopleva, Viktoriia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2021
Témata:
ISSN:2073-4433, 2073-4433
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Air quality monitoring systems differ in composition and accuracy of observations and their temporal and spatial coverage. A monitoring system’s performance can be assessed by evaluating the accuracy of the emission sources identified by its data. In the considered inverse modeling approach, a source identification problem is transformed to a quasi-linear operator equation with the sensitivity operator. The sensitivity operator is composed of the sensitivity functions evaluated on the adjoint ensemble members. The members correspond to the measurement data element aggregates. Such ensemble construction allows working in a unified way with heterogeneous measurement data in a single-operator equation. The quasi-linear structure of the resulting operator equation allows both solving and predicting solutions of the inverse problem. Numerical experiments for the Baikal region scenario were carried out to compare different types of inverse problem solution accuracy estimates. In the considered scenario, the projection to the orthogonal complement of the sensitivity operator’s kernel allowed predicting the source identification results with the best accuracy compared to the other estimate types. Our contribution is the development and testing of a sensitivity-operator-based set of tools for analyzing heterogeneous air quality monitoring systems. We propose them for assessing and optimizing observational systems and experiments.
AbstractList Air quality monitoring systems differ in composition and accuracy of observations and their temporal and spatial coverage. A monitoring system’s performance can be assessed by evaluating the accuracy of the emission sources identified by its data. In the considered inverse modeling approach, a source identification problem is transformed to a quasi-linear operator equation with the sensitivity operator. The sensitivity operator is composed of the sensitivity functions evaluated on the adjoint ensemble members. The members correspond to the measurement data element aggregates. Such ensemble construction allows working in a unified way with heterogeneous measurement data in a single-operator equation. The quasi-linear structure of the resulting operator equation allows both solving and predicting solutions of the inverse problem. Numerical experiments for the Baikal region scenario were carried out to compare different types of inverse problem solution accuracy estimates. In the considered scenario, the projection to the orthogonal complement of the sensitivity operator’s kernel allowed predicting the source identification results with the best accuracy compared to the other estimate types. Our contribution is the development and testing of a sensitivity-operator-based set of tools for analyzing heterogeneous air quality monitoring systems. We propose them for assessing and optimizing observational systems and experiments.
Author Penenko, Alexey
Gochakov, Alexander
Konopleva, Viktoriia
Penenko, Vladimir
Pyanova, Elza
Tsvetova, Elena
Author_xml – sequence: 1
  givenname: Alexey
  orcidid: 0000-0002-1729-3343
  surname: Penenko
  fullname: Penenko, Alexey
– sequence: 2
  givenname: Vladimir
  orcidid: 0000-0002-1646-7743
  surname: Penenko
  fullname: Penenko, Vladimir
– sequence: 3
  givenname: Elena
  orcidid: 0000-0003-1947-9560
  surname: Tsvetova
  fullname: Tsvetova, Elena
– sequence: 4
  givenname: Alexander
  orcidid: 0000-0001-9909-9730
  surname: Gochakov
  fullname: Gochakov, Alexander
– sequence: 5
  givenname: Elza
  orcidid: 0000-0002-9505-9448
  surname: Pyanova
  fullname: Pyanova, Elza
– sequence: 6
  givenname: Viktoriia
  surname: Konopleva
  fullname: Konopleva, Viktoriia
BookMark eNptkUFPGzEQhS0UJCBw5L5Szwte22uvjxEqEIkKVYEDJ2vWOxs53axT2ylKf30dQqUWMT7M2Hrf07PmjExGPyIhlxW94lzTa0hrHyuWj9TqiJwyqngpBOeTf-YTchHjiuYSmjMuTsnLAsfokvvl0q543GCA5ENxG2CNrz78KPp8m40w7H67cVncY8Lglzii38Zi5kLxfQvDHv3mR5fJvWixiwnX8Zwc9zBEvHjvU_J8-_Xp5r58eLyb38weSssVTSWzSsoOu05i08uWat0KVou6E7VUbd9j37RW1NwCaKuF0ppxhJpZLlHUtuVTMj_4dh5WZhPcGsLOeHDm7cGHpYGQnB3QUMho07QVNkwgdEB7WVmlaEc5Za3MXl8OXpvgf24xJrPy25C_Hw2TFVM5ExdZxQ8qG3yMAXtjXYLk_JgCuMFU1OxXYv5bSabKD9TfrJ_r_wB6wpHT
CitedBy_id crossref_primary_10_3390_su142114470
crossref_primary_10_1134_S1024856024701082
crossref_primary_10_1080_01431161_2024_2403623
crossref_primary_10_3390_math12010078
crossref_primary_10_3390_su14063388
crossref_primary_10_3390_atmos13111912
crossref_primary_10_3390_math10234522
crossref_primary_10_1134_S0001433825700719
Cites_doi 10.3390/atmos11111230
10.3390/atmos9010008
10.1134/S0021894419020202
10.3390/su13041686
10.1002/wcc.535
10.1038/s41598-018-25153-w
10.3390/atmos11111215
10.1016/j.envsoft.2010.01.006
10.3390/atmos12070807
10.1016/j.atmosenv.2021.118366
10.3390/atmos10080470
10.1016/j.scs.2020.102190
10.1002/qj.3471
10.1515/jiip.1995.3.2.131
10.1145/3326162
10.1088/1755-1315/611/1/012032
10.1093/acprof:oso/9780198723844.003.0022
10.3390/atmos12050595
10.1111/j.1600-0870.1986.tb00459.x
10.3390/atmos12101348
10.3934/ipi.2020035
10.1016/S1352-2310(97)00480-9
10.5194/acp-5-249-2005
10.5194/amt-14-6057-2021
10.3390/s18124363
10.3390/atmos11121289
10.3390/atmos12121542
10.1175/BAMS-D-18-0013.1
10.1088/0266-5611/29/3/035009
10.1016/j.atmosenv.2017.02.011
10.3390/atmos12101357
10.3389/fenvs.2018.00085
10.1134/S1024856020060056
10.1007/s10874-015-9326-0
10.3390/atmos11030244
10.5194/npg-22-15-2015
10.1175/MWR-D-10-05013.1
10.1016/j.scs.2020.102239
10.1002/2014MS000385
10.5194/amt-13-4601-2020
10.1002/2015JD024110
10.1002/2017JD026825
10.5194/gmd-12-3687-2019
10.1002/9781118033210
10.5194/acp-3-2111-2003
10.1134/S1995423920020068
10.1007/978-94-009-1740-8
10.3390/atmos10120739
10.3390/atmos12030374
10.1142/S021972001940002X
10.1016/j.cpc.2015.10.008
10.1137/1.9780898717761
10.1029/98JD02398
10.1134/S1024856019040067
10.1002/wat2.1528
10.1088/1742-6596/1715/1/012072
10.1016/j.cviu.2020.103134
10.3390/atmos12020179
10.5194/amt-14-7297-2021
10.1088/1361-6560/ab9066
10.1134/S1995423919010051
10.1016/j.jes.2021.01.011
10.1134/S1875372811020119
10.4209/aaqr.210121
10.1016/j.atmosenv.2009.07.011
10.1016/j.atmosenv.2008.02.065
10.17537/2016.11.426
10.5194/acp-15-7703-2015
10.3390/w13192636
10.3390/rs13112219
10.1007/s10666-015-9445-7
10.1016/j.atmosenv.2015.09.030
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QH
7ST
7TG
7TN
7UA
ABUWG
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
DOA
DOI 10.3390/atmos12121697
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2073-4433
ExternalDocumentID oai_doaj_org_article_0a3ea88b1e824eada0f61c770d0302b6
10_3390_atmos12121697
GeographicLocations Lake Baikal
GeographicLocations_xml – name: Lake Baikal
GroupedDBID 2XV
5VS
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADMLS
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
D1K
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6-
KQ8
MODMG
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
7QH
7ST
7TG
7TN
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c370t-2c766dedd6e8f6b099b42545d4567bffef8bc453caa9c9479923ea52c36e45cb3
IEDL.DBID BENPR
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000735474700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4433
IngestDate Tue Oct 14 19:03:30 EDT 2025
Mon Jun 30 07:28:33 EDT 2025
Sat Nov 29 07:20:32 EST 2025
Tue Nov 18 21:57:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-2c766dedd6e8f6b099b42545d4567bffef8bc453caa9c9479923ea52c36e45cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9909-9730
0000-0002-1729-3343
0000-0002-1646-7743
0000-0003-1947-9560
0000-0002-9505-9448
OpenAccessLink https://www.proquest.com/docview/2612745634?pq-origsite=%requestingapplication%
PQID 2612745634
PQPubID 2032431
ParticipantIDs doaj_primary_oai_doaj_org_article_0a3ea88b1e824eada0f61c770d0302b6
proquest_journals_2612745634
crossref_citationtrail_10_3390_atmos12121697
crossref_primary_10_3390_atmos12121697
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Atmosphere
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Araki (ref_8) 2015; 122
ref_50
Abida (ref_5) 2008; 42
Elbern (ref_32) 2007; 7
Penenko (ref_40) 2019; 12
Grigorieva (ref_64) 2011; 32
Desyatkov (ref_18) 1999; 12
ref_14
Dimet (ref_55) 1986; 38A
ref_58
ref_57
ref_12
ref_54
ref_51
Carrassi (ref_25) 2018; 9
Penenko (ref_3) 1985; 11
ref_16
ref_15
Penenko (ref_90) 2016; 11
Cheverda (ref_91) 1995; 3
Koh (ref_87) 2021; 203
Nguyen (ref_31) 2021; 253
Liu (ref_77) 2021; 14
Penenko (ref_53) 1976; 11
Penenko (ref_92) 2020; 13
ref_61
Issartel (ref_19) 2003; 3
ref_60
Markakis (ref_34) 2015; 15
Mijling (ref_30) 2020; 13
Brown (ref_66) 2021; 8
ref_69
ref_68
ref_67
Dimet (ref_52) 2015; 22
ref_63
Kim (ref_75) 2020; 101
Keats (ref_7) 2010; 25
Hauglustaine (ref_81) 1998; 103
Voronina (ref_73) 2014; 11
Judd (ref_74) 2018; 6
ref_29
ref_28
Mamonov (ref_20) 2013; 29
ref_26
Silver (ref_27) 2015; 73
Saunier (ref_6) 2009; 43
Baldauf (ref_82) 2011; 139
Naumann (ref_85) 2019; 45
Ngae (ref_9) 2019; 145
Marchuk (ref_49) 1964; 5
ref_72
ref_71
Holnicki (ref_35) 2015; 20
ref_70
Penenko (ref_42) 2019; 17
Akhtimankina (ref_65) 2013; 6
Penenko (ref_41) 2020; 14
ref_36
Plyusnin (ref_59) 2021; 152
ref_79
ref_78
Huang (ref_33) 2021; 21
Mettig (ref_76) 2021; 14
Bieringer (ref_23) 2017; 156
Penenko (ref_86) 2021; 1715
Zhang (ref_88) 2020; 65
Popovicheva (ref_62) 2021; 107
Cao (ref_11) 2020; 59
Khodzher (ref_44) 2019; 32
ref_38
ref_37
Kouichi (ref_10) 2019; 12
deSouza (ref_13) 2020; 60
ref_83
ref_80
ref_46
Antokhin (ref_45) 2018; 123
ref_89
Turbelin (ref_21) 2014; 6
Penenko (ref_39) 2019; 60
ref_1
Kumar (ref_22) 2015; 120
Issartel (ref_56) 2005; 5
ref_2
Pudykiewicz (ref_17) 1998; 32
Vlasenko (ref_84) 2016; 199
Bocquet (ref_24) 2014; 14
ref_48
Penenko (ref_4) 1986; 21
Penenko (ref_43) 2020; 611
Arshinov (ref_47) 2020; 33
References_xml – ident: ref_60
  doi: 10.3390/atmos11111230
– volume: 14
  start-page: 32233
  year: 2014
  ident: ref_24
  article-title: Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models
  publication-title: Atmos. Chem. Phys. Discuss.
– ident: ref_28
  doi: 10.3390/atmos9010008
– volume: 60
  start-page: 392
  year: 2019
  ident: ref_39
  article-title: Methods for Studying the Sensitivity of Air Quality Models and Inverse Problems of Geophysical Hydrothermodynamics
  publication-title: J. Appl. Mech. Tech. Phys.
  doi: 10.1134/S0021894419020202
– ident: ref_80
– ident: ref_15
  doi: 10.3390/su13041686
– volume: 9
  start-page: e535
  year: 2018
  ident: ref_25
  article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives
  publication-title: Wiley Interdiscip. Rev. Clim. Chang.
  doi: 10.1002/wcc.535
– volume: 152
  start-page: 202
  year: 2021
  ident: ref_59
  article-title: Baikal region in the UNESCO “Man and Biocphere” Programme
  publication-title: Probl. Geogr.
– ident: ref_89
  doi: 10.1038/s41598-018-25153-w
– ident: ref_12
  doi: 10.3390/atmos11111215
– volume: 25
  start-page: 1000
  year: 2010
  ident: ref_7
  article-title: Information-driven receptor placement for contaminant source determination
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2010.01.006
– ident: ref_16
– ident: ref_69
  doi: 10.3390/atmos12070807
– volume: 253
  start-page: 118366
  year: 2021
  ident: ref_31
  article-title: Data assimilation methods for urban air quality at the local scale
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2021.118366
– ident: ref_67
  doi: 10.3390/atmos10080470
– volume: 59
  start-page: 102190
  year: 2020
  ident: ref_11
  article-title: Sensor deployment strategy using cluster analysis of Fuzzy C-Means Algorithm: Towards online control of indoor environment’s safety and health
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102190
– volume: 145
  start-page: 967
  year: 2019
  ident: ref_9
  article-title: Optimization of an urban monitoring network for emergency response applications: An approach for characterizing the source of hazardous releases
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3471
– volume: 3
  start-page: 131
  year: 1995
  ident: ref_91
  article-title: R-pseudoinverses for compact operators in Hilbert spaces: Existence and stability
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/jiip.1995.3.2.131
– ident: ref_1
– volume: 45
  start-page: 1
  year: 2019
  ident: ref_85
  article-title: Adjoint Code Design Patterns
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/3326162
– volume: 611
  start-page: 012032
  year: 2020
  ident: ref_43
  article-title: Algorithms based on sensitivity operators for analyzing and solving inverse modeling problems of transport and transformation of atmospheric pollutants
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/611/1/012032
– volume: 11
  start-page: 532
  year: 2014
  ident: ref_73
  article-title: Some properties of the inverse operator for a tsunami source recovery
  publication-title: Sib. Elektron. Mat. Izv.
– ident: ref_26
  doi: 10.1093/acprof:oso/9780198723844.003.0022
– ident: ref_58
– ident: ref_14
  doi: 10.3390/atmos12050595
– volume: 38A
  start-page: 97
  year: 1986
  ident: ref_55
  article-title: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects
  publication-title: Tellus
  doi: 10.1111/j.1600-0870.1986.tb00459.x
– ident: ref_71
  doi: 10.3390/atmos12101348
– volume: 14
  start-page: 757
  year: 2020
  ident: ref_41
  article-title: Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements
  publication-title: Inverse Probl. Imaging
  doi: 10.3934/ipi.2020035
– volume: 7
  start-page: 1725
  year: 2007
  ident: ref_32
  article-title: Emission rate and chemical state estimation by 4-dimensional variational inversion
  publication-title: Atmos. Chem. Phys. Discuss.
– volume: 6
  start-page: 3
  year: 2013
  ident: ref_65
  article-title: Zagryaznenie atmosfernogo vozduha promyshlennymi predpriyatiyami g. Irkutska
  publication-title: IZVESTIYA Irkutsk. Gos. Univ.
– volume: 32
  start-page: 3039
  year: 1998
  ident: ref_17
  article-title: Application of adjoint tracer transport equations for evaluating source parameters
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(97)00480-9
– ident: ref_48
– volume: 5
  start-page: 249
  year: 2005
  ident: ref_56
  article-title: Emergence of a tracer source from air concentration measurements, a new strategy for linear assimilation
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-5-249-2005
– volume: 14
  start-page: 6057
  year: 2021
  ident: ref_76
  article-title: Ozone profile retrieval from nadir TROPOMI measurements in the UV range
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-6057-2021
– ident: ref_46
  doi: 10.3390/s18124363
– volume: 5
  start-page: 675
  year: 1964
  ident: ref_49
  article-title: Formulation of some converse problems
  publication-title: Sov. Math. Dokl.
– ident: ref_29
  doi: 10.3390/atmos11121289
– ident: ref_61
  doi: 10.3390/atmos12121542
– volume: 101
  start-page: E1
  year: 2020
  ident: ref_75
  article-title: New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-18-0013.1
– volume: 29
  start-page: 035009
  year: 2013
  ident: ref_20
  article-title: Point source identification in nonlinear advection-diffusion-reaction systems
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/29/3/035009
– volume: 156
  start-page: 102
  year: 2017
  ident: ref_23
  article-title: Paradigms and commonalities in atmospheric source term estimation methods
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.02.011
– ident: ref_70
  doi: 10.3390/atmos12101357
– volume: 6
  start-page: 1
  year: 2018
  ident: ref_74
  article-title: The Dawn of Geostationary Air Quality Monitoring: Case Studies From Seoul and Los Angeles
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2018.00085
– volume: 33
  start-page: 661
  year: 2020
  ident: ref_47
  article-title: Study of the Spatial Distributions of CO2 and CH4 in the Surface Air Layer over Western Siberia Using a Mobile Platform
  publication-title: Atmos. Ocean. Opt.
  doi: 10.1134/S1024856020060056
– volume: 11
  start-page: 10
  year: 1985
  ident: ref_3
  article-title: Planning an experiment for determining the position and strength of a pollution source
  publication-title: Sov. Meteorol. Hydrol.
– volume: 73
  start-page: 261
  year: 2015
  ident: ref_27
  article-title: Multi-species chemical data assimilation with the Danish Eulerian hemispheric model: System description and verification
  publication-title: J. Atmos. Chem.
  doi: 10.1007/s10874-015-9326-0
– ident: ref_38
  doi: 10.3390/atmos11030244
– volume: 22
  start-page: 15
  year: 2015
  ident: ref_52
  article-title: Toward the assimilation of images
  publication-title: Nonlinear Process. Geophys.
  doi: 10.5194/npg-22-15-2015
– volume: 139
  start-page: 3887
  year: 2011
  ident: ref_82
  article-title: Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities
  publication-title: Mon. Weather. Rev.
  doi: 10.1175/MWR-D-10-05013.1
– volume: 60
  start-page: 102239
  year: 2020
  ident: ref_13
  article-title: Air quality monitoring using mobile low-cost sensors mounted on trash-trucks: Methods development and lessons learned
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102239
– volume: 6
  start-page: 1244
  year: 2014
  ident: ref_21
  article-title: Reconstructing source terms from atmospheric concentration measurements: Optimality analysis of an inversion technique
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1002/2014MS000385
– volume: 13
  start-page: 4601
  year: 2020
  ident: ref_30
  article-title: High-resolution mapping of urban air quality with heterogeneous observations: A new methodology and its application to Amsterdam
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-13-4601-2020
– volume: 120
  start-page: 12589
  year: 2015
  ident: ref_22
  article-title: Reconstruction of an atmospheric tracer source in an urban-like environment
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2015JD024110
– volume: 123
  start-page: 2285
  year: 2018
  ident: ref_45
  article-title: Distribution of Trace Gases and Aerosols in the Troposphere Over Siberia during Wildfires of Summer 2012
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2017JD026825
– volume: 11
  start-page: 3
  year: 1976
  ident: ref_53
  article-title: A variational initialization method for the fields of the meteorological elements
  publication-title: Engl. Transl. Sov. Meteorol. Hydrol.
– volume: 12
  start-page: 3687
  year: 2019
  ident: ref_10
  article-title: An optimization for reducing the size of an existing urban-like monitoring network for retrieving an unknown point source emission
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-12-3687-2019
– ident: ref_51
  doi: 10.1002/9781118033210
– volume: 3
  start-page: 2111
  year: 2003
  ident: ref_19
  article-title: Rebuilding sources of linear tracers after atmospheric concentration measurements
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-3-2111-2003
– volume: 13
  start-page: 152
  year: 2020
  ident: ref_92
  article-title: Source Identification for the Smoluchowski Equation Using an Ensemble of Adjoint Equation Solutions
  publication-title: Numer. Anal. Appl.
  doi: 10.1134/S1995423920020068
– ident: ref_72
  doi: 10.1007/978-94-009-1740-8
– ident: ref_68
  doi: 10.3390/atmos10120739
– volume: 21
  start-page: 705
  year: 1986
  ident: ref_4
  article-title: Design of an experiment for the Pollution Source Power Estimation problem
  publication-title: Izv. Atmos. Ocean. Phys.
– ident: ref_37
  doi: 10.3390/atmos12030374
– volume: 17
  start-page: 1940002
  year: 2019
  ident: ref_42
  article-title: Numerical algorithm for morphogen synthesis region identification with indirect image-type measurement data
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S021972001940002X
– volume: 199
  start-page: 22
  year: 2016
  ident: ref_84
  article-title: The efficiency of geophysical adjoint codes generated by automatic differentiation tools
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.10.008
– ident: ref_79
– ident: ref_83
  doi: 10.1137/1.9780898717761
– ident: ref_50
– volume: 12
  start-page: 130
  year: 1999
  ident: ref_18
  article-title: Determination of some characteristics of an aerosol pollution source by solving the inverse problem of pollutant spread in the atmosphere
  publication-title: Atmos. Ocean. Opt.
– ident: ref_54
– ident: ref_2
– volume: 103
  start-page: 28291
  year: 1998
  ident: ref_81
  article-title: MOZART, a global chemical transport model for ozone and related chemical tracers: 2. Model results and evaluation
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/98JD02398
– volume: 32
  start-page: 434
  year: 2019
  ident: ref_44
  article-title: Ship-Based Studies of Aerosol-Gas Admixtures over Lake Baikal Basin in Summer 2018
  publication-title: Atmos. Ocean. Opt.
  doi: 10.1134/S1024856019040067
– volume: 8
  start-page: e1528
  year: 2021
  ident: ref_66
  article-title: Human impact and ecosystemic health at Lake Baikal
  publication-title: WIREs Water
  doi: 10.1002/wat2.1528
– volume: 1715
  start-page: 012072
  year: 2021
  ident: ref_86
  article-title: Parallel speedup analysis of an adjoint ensemble-based source identification algorithm
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1715/1/012072
– volume: 203
  start-page: 103134
  year: 2021
  ident: ref_87
  article-title: Single-image deblurring with neural networks: A comparative survey
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2020.103134
– ident: ref_36
  doi: 10.3390/atmos12020179
– volume: 14
  start-page: 7297
  year: 2021
  ident: ref_77
  article-title: An improved TROPOMI tropospheric NO2 research product over Europe
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-7297-2021
– volume: 65
  start-page: 155010
  year: 2020
  ident: ref_88
  article-title: Artifact removal using a hybrid-domain convolutional neural network for limited-angle computed tomography imaging
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab9066
– volume: 12
  start-page: 51
  year: 2019
  ident: ref_40
  article-title: A Newton-Kantorovich Method in Inverse Source Problems for Production-Destruction Models with Time Series-Type Measurement Data
  publication-title: Numer. Anal. Appl.
  doi: 10.1134/S1995423919010051
– volume: 107
  start-page: 49
  year: 2021
  ident: ref_62
  article-title: Industrial and wildfire aerosol pollution over world heritage Lake Baikal
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2021.01.011
– volume: 32
  start-page: 166
  year: 2011
  ident: ref_64
  article-title: Big business in socio-economic development of cities in the Baikal region
  publication-title: Geogr. Nat. Resour.
  doi: 10.1134/S1875372811020119
– volume: 21
  start-page: 210121
  year: 2021
  ident: ref_33
  article-title: Satellite-based Emission Inventory Adjustments Improve Simulations of Long-range Transport Events
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.210121
– volume: 43
  start-page: 4940
  year: 2009
  ident: ref_6
  article-title: Model reduction via principal component truncation for the optimal design of atmospheric monitoring networks
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.07.011
– volume: 42
  start-page: 5205
  year: 2008
  ident: ref_5
  article-title: Design of a monitoring network over France in case of a radiological accidental release
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.02.065
– volume: 11
  start-page: 426
  year: 2016
  ident: ref_90
  article-title: Numerical Algorithms for Diffusion Coefficient Identification in Problems of Tissue Engineering
  publication-title: Math. Biol. Bioinform.
  doi: 10.17537/2016.11.426
– volume: 15
  start-page: 7703
  year: 2015
  ident: ref_34
  article-title: Climate-forced air-quality modeling at the urban scale: Sensitivity to model resolution, emissions and meteorology
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-7703-2015
– ident: ref_57
– ident: ref_63
  doi: 10.3390/w13192636
– ident: ref_78
  doi: 10.3390/rs13112219
– volume: 20
  start-page: 583
  year: 2015
  ident: ref_35
  article-title: Emission Data Uncertainty in Urban Air Quality Modeling—Case Study
  publication-title: Environ. Model. Assess.
  doi: 10.1007/s10666-015-9445-7
– volume: 122
  start-page: 22
  year: 2015
  ident: ref_8
  article-title: Optimization of air monitoring networks using chemical transport model and search algorithm
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.09.030
SSID ssj0000493234
Score 2.282249
Snippet Air quality monitoring systems differ in composition and accuracy of observations and their temporal and spatial coverage. A monitoring system’s performance...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1697
SubjectTerms Accuracy
Air
Air monitoring
Air pollution
Air quality
Algorithms
Data assimilation
Decision making
Emission analysis
emission source identification
Forecasting
Identification
inverse problem
Inverse problems
Linear operators
Measurement
Monitoring systems
Numerical experiments
Sensitivity analysis
sensitivity operator
transport and transformation of impurities
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDDA9exJ84nZKD7GRZ2yRNcpzDsYtTUGGeSpKmMJnr2Kagf70vSTcmIl48tgTavryXfF_z-DyELqUmLFFURqVkLKKUF5EmlkegTZlQEJoyKXyzCT4citFI3m-0-nI1YQEPHAzXiRWxSgidWJFS-GwVl1liOI8LcM9Ue9h2zOVGMvUSdC9JCQ1QTQJ5fUctX6tFAgt1kjnA08Ym5Fn9P5Ziv7_099BuLQxxN7zQPtqy0wPUvAVNW839r2_cxr3JGASmvzpEzw-u9jw0f8B3M-vPy3F_VWyFQY1ijxz5hN0JD1zZSwXeYiHVx93xHAd6xgcOUe1-7-EaX36Envo3j71BVDdKiAzh8TJKDc-ywhZFZkWZaRB9GkKRsgLUEddlaUuhDWXEKCWNpFyCqrOKpYZkljKjyTFqTKupPUGYaUmFtZJIU1ClhITpI8odDzqEaJk10dXKcrmpKeKumcUkh2zCGTr_Zugmaq-HzwI-47eB124a1oMc9drfAF_Ia1_I__KFJmqtJjGvQ3GRO0YaB0MQevofzzhDO6kra_EVLS3UWM7f7DnaNu_L8WJ-4b3wC8xR5AU
  priority: 102
  providerName: Directory of Open Access Journals
Title Sensitivity Operator Framework for Analyzing Heterogeneous Air Quality Monitoring Systems
URI https://www.proquest.com/docview/2612745634
https://doaj.org/article/0a3ea88b1e824eada0f61c770d0302b6
Volume 12
WOSCitedRecordID wos000735474700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: PCBAR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbowqEXylNdSpEPFSciNrEd26cKECs4sKwKSHCK_ApaiW6WZEGCX9-x492CEFw4OvHBybw-z4y-QeiX1ISlisqklIwllHKbaOJ4AtiUCQWmKVMbhk3wwUBcX8thTLg1sa1y5hODo7aV8TnyfU91xSHaE_p7cp_4qVG-uhpHaHxBi56pLOugxcPjwfDPPMsC-JdkhLbkmgTu9_tq-rdqUnDYae6Jnl4Eo8DZ_8YlhzjT__bZE66g5Ygw8UGrEqtowY3XUPcMwHFVhxw63sVHdyNAqmG1jm4ufBN7O0UCn09cKLzj_qxrCwOsxYG75BnCHD7x_TMVqJ2rHhp8MKpxS8PxhFv34POEOPKgb6Cr_vHl0UkSJy4khvDeNMkMz3PrrM2dKHMN6FGDTVNm4bO4LktXCm0oI0YpaSTlEuChUywzJHeUGU02UWdcjd13hJmWVDgniTSWKiUk6AFRvs7ouUjLvIv2Zr--MJGO3E_FuCvgWuIlVbySVBftzrdPWh6O9zYeejnON3n67PCgqm-LaI1FT8GxhdCpExkFW1K9Mk8N5z0LPi_TcLjtmYiLaNNN8V--Wx-__oG-Zr7zJTS9bKPOtH5wP9GSeZyOmnonquhOuP3Danh6Nrz5B-ef9bw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJc-EYsFPABeiJqEtuxfUCoLV1t1XapoEjllNqOg1ZqN9tkCyo_it_I2EkWEIJbDxyTWJYTP888jydvAF4oQ3mimYpKxXnEmCgiQ52IkJtyqXFpqqQIxSbEZCKPj9XhCnzv_4XxaZW9TQyGuqisj5FveKkrgd6esjfz88hXjfKnq30JjRYWe-7yK27Zmte7b3F-X6bpaOdoexx1VQUiS0W8iFIrsqxwRZE5WWYGGZJB3DJeYOfClKUrpbGMU6u1sooJhRTIaZ5amjnGraHY7zVYZZRxNoDVrZ3J4ftlVAf5Nk0pa8U8KVXxhl6cVU2CDiLJvLDUL84v1Aj4wwUEvza6_b99kTtwq2PQZLOF_F1YcbN7MDxA8l_V4YyArJPt0yky8XB1Hz598En6bZUM8m7uQmIBGfVZaQRpOwnaLN_QjZOxzw-qcFm56qIhm9OatDIjl6Q1fz4OSjqd9wfw8Ure9CEMZtXMPQLCjWLSOUWVLZjWUiHOqfbnqF5rtcyG8Kqf6tx2cuu-6sdpjtsuj4z8N2QMYX3ZfN7qjPyt4ZbHzbKRlwcPN6r6c95ZmzzWOGwpTeJkytBW6LjMEitEXKBNTw0Obq2HVN7ZrCb_iafH_378HG6Mjw728_3dyd4TuJn6LJ-Q4LMGg0V94Z7CdftlMW3qZ93yIHBy1fj7Ac8uUc8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUK98I1YKOAD9ES0SWzH8QGh0rLqqnRZCZDaU_BX0ErtZkm2oPLT-HWMnWQBIbj1wDGJlTjxm5lne_IG4KnUlCeKyaiUnEeMCRtp6kSE3JTnCk1TJjYUmxDTaX58LGcb8L3_F8anVfY-MThqWxm_Rj7yUlcCoz1lo7JLi5jtj18uP0e-gpTfae3LabQQOXQXX3H61ryY7ONYP0vT8ev3ewdRV2EgMlTEqyg1IsusszZzeZlpZEsaMcy4xQcJXZauzLVhnBqlpJFMSKRDTvHU0MwxbjTF-16BTaTkKRvA5mxyNDtZr_Ag96YpZa2wJ6UyHqnVWdUkGCySzItM_RIIQ72AP8JBiHHjG__z17kJ1ztmTXZbU7gFG25xG4ZHOCmo6rB3QHbI3ukcGXo4ugMn73zyfls9g7xdupBwQMZ9thpBOk-CZss3DO_kwOcNVWhurjpvyO68Jq38yAVp3aJfHyWd_vtd-HApb3oPBotq4e4D4Vqy3DlJpbFMqVwi_qny-6teg7XMhvC8H_bCdDLsvhrIaYHTMY-S4jeUDGFn3XzZ6o_8reErj6F1Iy8bHk5U9aei80JFrLDbea4Tl6cMfYiKyywxQsQWfX2qsXPbPbyKzpc1xU9sPfj35SdwDUFXvJlMDx_CVuqTf0LezzYMVvW5ewRXzZfVvKkfd5ZC4ONlw-8HsqBawQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+Operator+Framework+for+Analyzing+Heterogeneous+Air+Quality+Monitoring+Systems&rft.jtitle=Atmosphere&rft.au=Penenko%2C+Alexey&rft.au=Penenko%2C+Vladimir&rft.au=Tsvetova%2C+Elena&rft.au=Gochakov%2C+Alexander&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2073-4433&rft.volume=12&rft.issue=12&rft.spage=1697&rft_id=info:doi/10.3390%2Fatmos12121697&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4433&client=summon