Maximum likelihood separation of anthropogenic and wind-generated underwater noise

A method is presented for simultaneous estimation of the probability distributions of both anthropogenic and wind-generated underwater noise power spectral density using only acoustic data recorded with a single hydrophone. Probability density models for both noise sources are suggested, and the mod...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America Vol. 152; no. 3; p. 1292
Main Authors: Larsson Nordström, Robin, Lalander, Emilia, Skog, Isaac, Andersson, Mathias
Format: Journal Article
Language:English
Published: 01.09.2022
ISSN:1520-8524, 1520-8524
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A method is presented for simultaneous estimation of the probability distributions of both anthropogenic and wind-generated underwater noise power spectral density using only acoustic data recorded with a single hydrophone. Probability density models for both noise sources are suggested, and the model parameters are estimated using the method of maximum likelihood. A generic mixture model is utilized to model a time invariant anthropogenic noise distribution. Wind-generated noise is assumed normally distributed with a wind speed-dependent mean. The mean is then modeled as an affine linear function of the wind-generated noise level at a reference frequency, selected in a frequency range where the anthropogenic noise is less dominant. The method was used to successfully estimate the wind-generated noise spectra from ambient noise recordings collected at two locations in the southern Baltic Sea. At the North location, 3 km from the nearest shipping lane, the ship noise surpasses the wind-generated noise almost 100% of the time in the frequency band 63-400 Hz during summer for wind speed 7 m/s. At the South location, 14 km to the nearest shipping lane, the ship noise dominance is lower but still 40%-90% in the same frequencies and wind speed.A method is presented for simultaneous estimation of the probability distributions of both anthropogenic and wind-generated underwater noise power spectral density using only acoustic data recorded with a single hydrophone. Probability density models for both noise sources are suggested, and the model parameters are estimated using the method of maximum likelihood. A generic mixture model is utilized to model a time invariant anthropogenic noise distribution. Wind-generated noise is assumed normally distributed with a wind speed-dependent mean. The mean is then modeled as an affine linear function of the wind-generated noise level at a reference frequency, selected in a frequency range where the anthropogenic noise is less dominant. The method was used to successfully estimate the wind-generated noise spectra from ambient noise recordings collected at two locations in the southern Baltic Sea. At the North location, 3 km from the nearest shipping lane, the ship noise surpasses the wind-generated noise almost 100% of the time in the frequency band 63-400 Hz during summer for wind speed 7 m/s. At the South location, 14 km to the nearest shipping lane, the ship noise dominance is lower but still 40%-90% in the same frequencies and wind speed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-8524
1520-8524
DOI:10.1121/10.0013887