A Ubiquitous Clinic Recommendation System Using the Modified Mixed-Binary Nonlinear Programming-Feedforward Neural Network Approach
Most of the existing ubiquitous clinic recommendation (UCR) systems adopt linear mechanisms to aggregate the attribute-level performances of a clinic to evaluate the overall performance. However, such linear mechanisms may not be able to explain the choices of all patients. To solve this problem, th...
Uloženo v:
| Vydáno v: | Journal of theoretical and applied electronic commerce research Ročník 16; číslo 7; s. 3282 - 3298 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Curicó
MDPI AG
01.12.2021
|
| Témata: | |
| ISSN: | 0718-1876, 0718-1876 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Most of the existing ubiquitous clinic recommendation (UCR) systems adopt linear mechanisms to aggregate the attribute-level performances of a clinic to evaluate the overall performance. However, such linear mechanisms may not be able to explain the choices of all patients. To solve this problem, the modified mixed binary nonlinear programming (MMBNLP)–feedforward neural network (FNN) approach is proposed in this study. In the proposed methodology, first, the existing MBNLP model is modified to improve the successful recommendation rate using a linear recommendation mechanism. Subsequently, an FNN is constructed to fit the relationship between the attribute-level performances of a clinic and its overall performance, thereby providing possible ways to further enhance the recommendation performance. The results of a regional experiment showed that the MMBNLP–FNN approach improved the successful recommendation rate by 30%. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0718-1876 0718-1876 |
| DOI: | 10.3390/jtaer16070178 |