The ensemble approach in comparison with the diverse feature selection techniques for estimating NPPs parameters using the different learning algorithms of the feed-forward neural network

Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS) technique that outperforms other ones. Moreover, some approaches such as using synthetic dataset, in presence of large number of FS techniques, are very tedious and time consuming task. In thi...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and technology Vol. 53; no. 12; pp. 3944 - 3951
Main Author: Moshkbar-Bakhshayesh, Khalil
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2021
Elsevier
한국원자력학회
Subjects:
ISSN:1738-5733, 2234-358X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS) technique that outperforms other ones. Moreover, some approaches such as using synthetic dataset, in presence of large number of FS techniques, are very tedious and time consuming task. In this study to tackle the issue of dependency of estimation accuracy on the selected FS technique, a methodology based on the heterogeneous ensemble is proposed. The performance of the major learning algorithms of neural network (i.e. the FFNN-BR, the FFNN-LM) in combination with the diverse FS techniques (i.e. the NCA, the F-test, the Kendall's tau, the Pearson, the Spearman, and the Relief) and different combination techniques of the heterogeneous ensemble (i.e. the Min, the Median, the Arithmetic mean, and the Geometric mean) are considered. The target parameters/transients of Bushehr nuclear power plant (BNPP) are examined as the case study. The results show that the Min combination technique gives the more accurate estimation. Therefore, if the number of FS techniques is m and the number of learning algorithms is n, by the heterogeneous ensemble, the search space for acceptable estimation of the target parameters may be reduced from n × m to n × 1. The proposed methodology gives a simple and practical approach for more reliable and more accurate estimation of the target parameters compared to the methods such as the use of synthetic dataset or trial and error methods.
AbstractList Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS)technique that outperforms other ones. Moreover, some approaches such as using synthetic dataset, inpresence of large number of FS techniques, are very tedious and time consuming task. In this study totackle the issue of dependency of estimation accuracy on the selected FS technique, a methodology basedon the heterogeneous ensemble is proposed. The performance of the major learning algorithms of neuralnetwork (i.e. the FFNN-BR, the FFNN-LM) in combination with the diverse FS techniques (i.e. the NCA, theF-test, the Kendall's tau, the Pearson, the Spearman, and the Relief) and different combination techniquesof the heterogeneous ensemble (i.e. the Min, the Median, the Arithmetic mean, and the Geometric mean)are considered. The target parameters/transients of Bushehr nuclear power plant (BNPP) are examined asthe case study. The results show that the Min combination technique gives the more accurate estimation. Therefore, if the number of FS techniques is m and the number of learning algorithms is n, by the heterogeneous ensemble, the search space for acceptable estimation of the target parameters may bereduced from n m to n 1. The proposed methodology gives a simple and practical approach for morereliable and more accurate estimation of the target parameters compared to the methods such as the useof synthetic dataset or trial and error methods KCI Citation Count: 0
Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS) technique that outperforms other ones. Moreover, some approaches such as using synthetic dataset, in presence of large number of FS techniques, are very tedious and time consuming task. In this study to tackle the issue of dependency of estimation accuracy on the selected FS technique, a methodology based on the heterogeneous ensemble is proposed. The performance of the major learning algorithms of neural network (i.e. the FFNN-BR, the FFNN-LM) in combination with the diverse FS techniques (i.e. the NCA, the F-test, the Kendall's tau, the Pearson, the Spearman, and the Relief) and different combination techniques of the heterogeneous ensemble (i.e. the Min, the Median, the Arithmetic mean, and the Geometric mean) are considered. The target parameters/transients of Bushehr nuclear power plant (BNPP) are examined as the case study. The results show that the Min combination technique gives the more accurate estimation. Therefore, if the number of FS techniques is m and the number of learning algorithms is n, by the heterogeneous ensemble, the search space for acceptable estimation of the target parameters may be reduced from n × m to n × 1. The proposed methodology gives a simple and practical approach for more reliable and more accurate estimation of the target parameters compared to the methods such as the use of synthetic dataset or trial and error methods.
Author Moshkbar-Bakhshayesh, Khalil
Author_xml – sequence: 1
  givenname: Khalil
  orcidid: 0000-0002-7973-6787
  surname: Moshkbar-Bakhshayesh
  fullname: Moshkbar-Bakhshayesh, Khalil
  email: moshkbar@sharif.edu
  organization: Department of Energy Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002776056$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kUFvEzEQhVeoSKSBH8DNVw4b7PWuvRGnqoISqSoVChI3y2uPEycbO4ydRvw2_lydBHHg0NNIT-97M5p3XV2FGKCq3jM6Y5SJj5tZgDxraMNmVMwop6-qSdPwtuZd__OqmjDJ-7qTnL-prlPaUCraVtJJ9We5BgIhwW4Ygej9HqM2a-IDMXG31-hTDOTo85rkYrT-CTABcaDzAYEkGMFkXywZzDr4XwdIxEUkkLLf6ezDijw8PiZSkvQOcoHJIZ3US5pzgBAyGUFjOMl6XEUs23aJRHc2OQBbl8ijRksCHFCPZeRjxO3b6rXTY4J3f-e0-vHl8_L2a33_7W5xe3NfGy5prhkXrbOtBdH17QCuabUbxOA472QRpaOd0dZxKjgThTDzTmjGe8vsXFou-bT6cMkN6NTWeBW1P89VVFtUN9-XCzXve9H2XfEuLl4b9UbtsXwBf5-BsxBxpTRmb0ZQlGknOyEM75vWzruBuZ5JO2huQdpy0LRilyyDMSUE9y-PUXVqXW1UeYU6ta6oUKX1wsj_GOOzPlWUUfvxRfLThYTyyicPqJLxEAxYj6Xkcr9_gX4Gnz3O0w
CitedBy_id crossref_primary_10_1016_j_radphyschem_2023_111180
crossref_primary_10_1016_j_anucene_2022_109668
crossref_primary_10_1016_j_radphyschem_2025_113081
crossref_primary_10_1016_j_nucengdes_2024_113120
Cites_doi 10.1016/j.anucene.2019.107232
10.1016/j.anucene.2021.108222
10.1016/j.pnucene.2019.103100
10.1016/j.asoc.2015.01.035
10.1080/00031305.1990.10475752
10.1016/j.asoc.2013.09.018
10.1016/j.net.2016.11.001
10.1016/j.anucene.2020.107667
10.1016/j.net.2021.01.040
10.1109/TNS.2014.2346234
10.1016/S0149-1970(97)00109-1
10.1126/science.1087447
10.1109/23.489417
10.1162/neco.1996.8.7.1341
10.1371/journal.pone.0117988
ContentType Journal Article
Copyright 2021 Korean Nuclear Society
Copyright_xml – notice: 2021 Korean Nuclear Society
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
ACYCR
DOI 10.1016/j.net.2021.06.030
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2234-358X
EndPage 3951
ExternalDocumentID oai_kci_go_kr_ARTI_9886485
oai_doaj_org_article_01af7566c3824d95b1f817dba3de7ddf
10_1016_j_net_2021_06_030
S1738573321003776
GroupedDBID .UV
0R~
0SF
123
4.4
457
5VS
6I.
9ZL
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACYCR
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
JDI
KQ8
KVFHK
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c370t-1364fd4de6584bef24afb6bf3357de67f05cadf306316370c956a138d1d97d373
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000697930900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1738-5733
IngestDate Tue Nov 21 21:43:10 EST 2023
Fri Oct 03 12:29:44 EDT 2025
Wed Oct 29 21:31:02 EDT 2025
Tue Nov 18 21:45:47 EST 2025
Wed May 17 00:09:18 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Heterogeneous ensemble
Parameter estimation
Combination technique
Supervised learning algorithm
Features selection technique
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-1364fd4de6584bef24afb6bf3357de67f05cadf306316370c956a138d1d97d373
ORCID 0000-0002-7973-6787
OpenAccessLink https://doaj.org/article/01af7566c3824d95b1f817dba3de7ddf
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9886485
doaj_primary_oai_doaj_org_article_01af7566c3824d95b1f817dba3de7ddf
crossref_primary_10_1016_j_net_2021_06_030
crossref_citationtrail_10_1016_j_net_2021_06_030
elsevier_sciencedirect_doi_10_1016_j_net_2021_06_030
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
2021-12-01
2021-12
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Nuclear engineering and technology
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
한국원자력학회
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: 한국원자력학회
References Moshkbar-Bakhshayesh, Ghofrani (bib5) 2014; 61
Xue, Zhang, Browne (bib10) 2014; 18
Stuart, Segal, Koller, Kim (bib19) 2003; 302
Caruana, Niculescu-Mizil (bib16) 2006
Moshkbar-Bakhshayesh (bib26) 2021; 156
Sammut, Webb (bib15) 2011
Okut (bib25) 2016
Moshkbar-Bakhshayesh (bib6) 2020; 139
Basu, Ho (bib18) 2006
Goldberger, Hinton, Roweis, Salakhutdinov (bib21) 2004; 17
Bolón-Canedo, Alonso-Betanzos (bib14) 2018
Mukhopadhyay, Chaudhuri (bib9) 1995; 42
Moshkbar-Bakhshayesh, Mohtashami (bib2) 2019; 117
Chok (bib20) 2010
Moshkbar-Bakhshayesh (bib23) 2019; 14
BNPP (bib27) 2003
Markowski, Markowski (bib22) 1990; 44
Uhrig, Hines (bib4) 2005; 37
Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (bib17) 2015; 30
Park, An, Yoo, Na (bib1) 2021
Soufan, Kleftogiannis, Kalnis, Bajic (bib11) 2015; 10
Moshkbar-Bakhshayesh, Ghanbari, Ghofrani (bib12) 2020; 146
Uhrig, Tsoukalas (bib3) 1999; 34
Choi, Yoo, Back, Na (bib7) 2017; 49
Wolpert (bib13) 1996; 8
Fausett (bib8) 2006
Wang, Ji, Leung, Sum (bib24) 2009; 4
Bolón-Canedo (10.1016/j.net.2021.06.030_bib17) 2015; 30
Moshkbar-Bakhshayesh (10.1016/j.net.2021.06.030_bib6) 2020; 139
Chok (10.1016/j.net.2021.06.030_bib20) 2010
Mukhopadhyay (10.1016/j.net.2021.06.030_bib9) 1995; 42
Basu (10.1016/j.net.2021.06.030_bib18) 2006
Stuart (10.1016/j.net.2021.06.030_bib19) 2003; 302
Okut (10.1016/j.net.2021.06.030_bib25) 2016
Xue (10.1016/j.net.2021.06.030_bib10) 2014; 18
Moshkbar-Bakhshayesh (10.1016/j.net.2021.06.030_bib26) 2021; 156
Wang (10.1016/j.net.2021.06.030_bib24) 2009; 4
Moshkbar-Bakhshayesh (10.1016/j.net.2021.06.030_bib23) 2019; 14
BNPP (10.1016/j.net.2021.06.030_bib27) 2003
Moshkbar-Bakhshayesh (10.1016/j.net.2021.06.030_bib12) 2020; 146
Uhrig (10.1016/j.net.2021.06.030_bib4) 2005; 37
Goldberger (10.1016/j.net.2021.06.030_bib21) 2004; 17
Park (10.1016/j.net.2021.06.030_bib1) 2021
Soufan (10.1016/j.net.2021.06.030_bib11) 2015; 10
Choi (10.1016/j.net.2021.06.030_bib7) 2017; 49
Wolpert (10.1016/j.net.2021.06.030_bib13) 1996; 8
Fausett (10.1016/j.net.2021.06.030_bib8) 2006
Bolón-Canedo (10.1016/j.net.2021.06.030_bib14) 2018
Caruana (10.1016/j.net.2021.06.030_bib16) 2006
Moshkbar-Bakhshayesh (10.1016/j.net.2021.06.030_bib2) 2019; 117
Sammut (10.1016/j.net.2021.06.030_bib15) 2011
Moshkbar-Bakhshayesh (10.1016/j.net.2021.06.030_bib5) 2014; 61
Uhrig (10.1016/j.net.2021.06.030_bib3) 1999; 34
Markowski (10.1016/j.net.2021.06.030_bib22) 1990; 44
References_xml – volume: 156
  year: 2021
  ident: bib26
  article-title: Identification of the appropriate architecture of multilayer feed-forward neural network for estimation of NPPs parameters using the GA in combination with the LM and the BR learning algorithms
  publication-title: Ann. Nucl. Energy
– volume: 42
  start-page: 2209
  year: 1995
  end-page: 2220
  ident: bib9
  article-title: A feature-based approach to monitor motor-operated valves used in nuclear power plants
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 18
  start-page: 261
  year: 2014
  end-page: 276
  ident: bib10
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
– year: 2006
  ident: bib18
  article-title: Data Complexity in Pattern Recognition
– year: 2010
  ident: bib20
  article-title: Pearson's versus Spearman's and Kendall's Correlation Coefficients for Continuous Data
– volume: 4
  start-page: 45
  year: 2009
  end-page: 48
  ident: bib24
  article-title: Regularization parameter selection for faulty neural networks
  publication-title: Int. J. Intell. Syst. Technol.
– year: 2003
  ident: bib27
  article-title: Final safety analysis report (FSAR), Chapter 15, Rev. 0,
– year: 2018
  ident: bib14
  article-title: Recent Advances in Ensembles for Feature Selection
– year: 2021
  ident: bib1
  article-title: Leak flow prediction during loss of coolant accidents using deep fuzzy neural networks
  publication-title: Nuclear Engineering and Technology
– volume: 146
  year: 2020
  ident: bib12
  article-title: Development of a new features selection algorithm for estimation of NPPs operating parameters
  publication-title: Ann. Nucl. Energy
– volume: 17
  start-page: 513
  year: 2004
  end-page: 520
  ident: bib21
  article-title: Neighbourhood components analysis
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 49
  start-page: 495
  year: 2017
  end-page: 503
  ident: bib7
  article-title: Estimation of LOCA break size using cascaded fuzzy neural networks
  publication-title: Nuclear Engineering and Technology
– year: 2016
  ident: bib25
  article-title: (Artificial Neural Networks-Models Applications)
– year: 2006
  ident: bib8
  article-title: Fundamentals of Neural Networks: Architectures, Algorithms and Applications
– volume: 34
  start-page: 13
  year: 1999
  end-page: 75
  ident: bib3
  article-title: Soft computing technologies in nuclear engineering applications
  publication-title: Prog. Nucl. Energy
– start-page: 161
  year: 2006
  end-page: 168
  ident: bib16
  article-title: An empirical comparison of supervised learning algorithms
  publication-title: Proceedings of the 23rd International Conference on Machine Learning
– volume: 44
  start-page: 322
  year: 1990
  end-page: 326
  ident: bib22
  article-title: Conditions for the effectiveness of a preliminary test of variance
  publication-title: Am. Statistician
– volume: 30
  start-page: 136
  year: 2015
  end-page: 150
  ident: bib17
  article-title: Distributed feature selection: an application to microarray data classification
  publication-title: Appl. Soft Comput.
– volume: 117
  year: 2019
  ident: bib2
  article-title: Classification of NPPs transients using change of representation technique: a hybrid of unsupervised MSOM and supervised SVM
  publication-title: Prog. Nucl. Energy
– volume: 302
  start-page: 249
  year: 2003
  end-page: 255
  ident: bib19
  article-title: A gene-coexpression network for global discovery of conserved genetic modules
  publication-title: Science
– volume: 139
  year: 2020
  ident: bib6
  article-title: Prediction of unmeasurable parameters of NPPs using different model-free methods based on cross-correlation detection of measurable/unmeasurable parameters: a comparative study
  publication-title: Ann. Nucl. Energy
– volume: 10
  year: 2015
  ident: bib11
  article-title: DWFS: a wrapper feature selection tool based on a parallel genetic algorithm
  publication-title: PloS One
– volume: 8
  start-page: 1341
  year: 1996
  end-page: 1390
  ident: bib13
  article-title: The lack of a priori distinctions between learning algorithms
  publication-title: Neural Comput.
– year: 2011
  ident: bib15
  article-title: Encyclopedia of Machine Learning
– volume: 37
  start-page: 127
  year: 2005
  end-page: 138
  ident: bib4
  article-title: Computational intelligence in nuclear engineering
  publication-title: Nuclear Engineering and Technology
– volume: 14
  year: 2019
  ident: bib23
  article-title: Development of a modular system for estimating attenuation coefficient of gamma radiation: comparative study of different learning algorithms of cascade feed-forward neural network
  publication-title: J. Instrum.
– volume: 61
  start-page: 2636
  year: 2014
  end-page: 2642
  ident: bib5
  article-title: Development of a new method for forecasting future states of NPPs parameters in transients
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 139
  year: 2020
  ident: 10.1016/j.net.2021.06.030_bib6
  article-title: Prediction of unmeasurable parameters of NPPs using different model-free methods based on cross-correlation detection of measurable/unmeasurable parameters: a comparative study
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2019.107232
– volume: 156
  year: 2021
  ident: 10.1016/j.net.2021.06.030_bib26
  article-title: Identification of the appropriate architecture of multilayer feed-forward neural network for estimation of NPPs parameters using the GA in combination with the LM and the BR learning algorithms
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2021.108222
– start-page: 161
  year: 2006
  ident: 10.1016/j.net.2021.06.030_bib16
  article-title: An empirical comparison of supervised learning algorithms
– volume: 37
  start-page: 127
  issue: 2
  year: 2005
  ident: 10.1016/j.net.2021.06.030_bib4
  article-title: Computational intelligence in nuclear engineering
  publication-title: Nuclear Engineering and Technology
– year: 2006
  ident: 10.1016/j.net.2021.06.030_bib18
– volume: 14
  issue: 10
  year: 2019
  ident: 10.1016/j.net.2021.06.030_bib23
  article-title: Development of a modular system for estimating attenuation coefficient of gamma radiation: comparative study of different learning algorithms of cascade feed-forward neural network
  publication-title: J. Instrum.
– year: 2016
  ident: 10.1016/j.net.2021.06.030_bib25
– volume: 117
  year: 2019
  ident: 10.1016/j.net.2021.06.030_bib2
  article-title: Classification of NPPs transients using change of representation technique: a hybrid of unsupervised MSOM and supervised SVM
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2019.103100
– volume: 30
  start-page: 136
  year: 2015
  ident: 10.1016/j.net.2021.06.030_bib17
  article-title: Distributed feature selection: an application to microarray data classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.035
– volume: 44
  start-page: 322
  issue: 4
  year: 1990
  ident: 10.1016/j.net.2021.06.030_bib22
  article-title: Conditions for the effectiveness of a preliminary test of variance
  publication-title: Am. Statistician
  doi: 10.1080/00031305.1990.10475752
– year: 2011
  ident: 10.1016/j.net.2021.06.030_bib15
– volume: 17
  start-page: 513
  year: 2004
  ident: 10.1016/j.net.2021.06.030_bib21
  article-title: Neighbourhood components analysis
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 4
  start-page: 45
  issue: 1
  year: 2009
  ident: 10.1016/j.net.2021.06.030_bib24
  article-title: Regularization parameter selection for faulty neural networks
  publication-title: Int. J. Intell. Syst. Technol.
– volume: 18
  start-page: 261
  year: 2014
  ident: 10.1016/j.net.2021.06.030_bib10
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.09.018
– volume: 49
  start-page: 495
  issue: 3
  year: 2017
  ident: 10.1016/j.net.2021.06.030_bib7
  article-title: Estimation of LOCA break size using cascaded fuzzy neural networks
  publication-title: Nuclear Engineering and Technology
  doi: 10.1016/j.net.2016.11.001
– volume: 146
  year: 2020
  ident: 10.1016/j.net.2021.06.030_bib12
  article-title: Development of a new features selection algorithm for estimation of NPPs operating parameters
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2020.107667
– year: 2018
  ident: 10.1016/j.net.2021.06.030_bib14
– year: 2021
  ident: 10.1016/j.net.2021.06.030_bib1
  article-title: Leak flow prediction during loss of coolant accidents using deep fuzzy neural networks
  publication-title: Nuclear Engineering and Technology
  doi: 10.1016/j.net.2021.01.040
– year: 2003
  ident: 10.1016/j.net.2021.06.030_bib27
– volume: 61
  start-page: 2636
  issue: 5
  year: 2014
  ident: 10.1016/j.net.2021.06.030_bib5
  article-title: Development of a new method for forecasting future states of NPPs parameters in transients
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2014.2346234
– year: 2010
  ident: 10.1016/j.net.2021.06.030_bib20
– volume: 34
  start-page: 13
  issue: 1
  year: 1999
  ident: 10.1016/j.net.2021.06.030_bib3
  article-title: Soft computing technologies in nuclear engineering applications
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/S0149-1970(97)00109-1
– year: 2006
  ident: 10.1016/j.net.2021.06.030_bib8
– volume: 302
  start-page: 249
  issue: 5643
  year: 2003
  ident: 10.1016/j.net.2021.06.030_bib19
  article-title: A gene-coexpression network for global discovery of conserved genetic modules
  publication-title: Science
  doi: 10.1126/science.1087447
– volume: 42
  start-page: 2209
  issue: 6
  year: 1995
  ident: 10.1016/j.net.2021.06.030_bib9
  article-title: A feature-based approach to monitor motor-operated valves used in nuclear power plants
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.489417
– volume: 8
  start-page: 1341
  issue: 7
  year: 1996
  ident: 10.1016/j.net.2021.06.030_bib13
  article-title: The lack of a priori distinctions between learning algorithms
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.7.1341
– volume: 10
  issue: 2
  year: 2015
  ident: 10.1016/j.net.2021.06.030_bib11
  article-title: DWFS: a wrapper feature selection tool based on a parallel genetic algorithm
  publication-title: PloS One
  doi: 10.1371/journal.pone.0117988
SSID ssj0064470
Score 2.259466
Snippet Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS) technique that outperforms other ones. Moreover,...
Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS)technique that outperforms other ones. Moreover,...
SourceID nrf
doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 3944
SubjectTerms Combination technique
Features selection technique
Heterogeneous ensemble
Parameter estimation
Supervised learning algorithm
원자력공학
Title The ensemble approach in comparison with the diverse feature selection techniques for estimating NPPs parameters using the different learning algorithms of the feed-forward neural network
URI https://dx.doi.org/10.1016/j.net.2021.06.030
https://doaj.org/article/01af7566c3824d95b1f817dba3de7ddf
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002776056
Volume 53
WOSCitedRecordID wos000697930900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nuclear Engineering and Technology, 2021, 53(12), , pp.3944-3951
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2234-358X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064470
  issn: 1738-5733
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgxQEOiE9RvjRCnJAi4tqOneMuYgWXqgeQ9mY5sR2VbdNVUvhz_Dlm7KQql-XCqVLk2m5nnHnTvL7H2HupJJ4aWRUq8qaQ3vOi8UoXbYymxowKSsdkNqFXK3N1Va9PrL6IE5blgfMX97HkLmrEHK0wS-lr1fBouPaNEz5o7yPdfUtdz81Uvgdjkdf5r5B4nEnxb36emZhd2PNjY7jkSbiT6M8nFSkJ9_9VmO72QzwpOZeP2MMJK8J53uNjdif0T9iDEwXBp-w3hhmwEw27ZhtgFgiHTQ_t0WAQ6LdWQKAHPpEwAsSQ5DxhTCY4GBk4SrmOgCgWSHqDoGzfwWq9HoEEwndEnBmBiPLdNFv2VjnAZD3Rgdt2-wFX242wj2lQxOpY4JREzgUSz8QP1Gfq-TP2_fLzt09fismPoWiFLsm1vpLRSx8ItTQhLqWLTdVEIZTGizqWqnU-YhMiEOXpssXey3FhPPe19kKL5-ys3_fhBQN6-Gt4WCrjSaDGOReNqwgtKNksa75g5RwT205i5eSZsbUzK-2Hxc1aCqMlZp4oF-zD8S03WanjtsEXFOjjQBLZThcw9eyUevZfqbdgck4TO-GVjENwqs1ta7_DlLLX7SYtS6_d3l4PFjuYr7Y2ppJGvfwfG3zF7tO6mX3zmp0dhp_hDbvX_jpsxuFtOjF_ANvSHng
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ensemble+approach+in+comparison+with+the+diverse+feature+selection+techniques+for+estimating+NPPs+parameters+using+the+different+learning+algorithms+of+the+feed-forward+neural+network&rft.jtitle=Nuclear+engineering+and+technology&rft.au=Khalil+Moshkbar-Bakhshayesh&rft.date=2021-12-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%9B%90%EC%9E%90%EB%A0%A5%ED%95%99%ED%9A%8C&rft.issn=1738-5733&rft.eissn=2234-358X&rft.spage=3944&rft.epage=3951&rft_id=info:doi/10.1016%2Fj.net.2021.06.030&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9886485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon