Numerical Solution Methods for a Nonlinear Operator Equation Arising in an Inverse Coefficient Problem
We consider the inverse problem of determining two unknown coefficients in a linear system of partial differential equations using additional information about one of the solution components. The problem is reduced to a nonlinear operator equation for one of the unknown coefficients. The successive...
Gespeichert in:
| Veröffentlicht in: | Differential equations Jg. 57; H. 7; S. 868 - 875 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Moscow
Pleiades Publishing
01.07.2021
Springer |
| Schlagworte: | |
| ISSN: | 0012-2661, 1608-3083 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We consider the inverse problem of determining two unknown coefficients in a linear system of partial differential equations using additional information about one of the solution components. The problem is reduced to a nonlinear operator equation for one of the unknown coefficients. The successive approximation method and the Newton method are used to solve this operator equation numerically. Results of calculations illustrating the convergence of numerical methods for solving the inverse problem are presented. |
|---|---|
| AbstractList | We consider the inverse problem of determining two unknown coefficients in a linearsystem of partial differential equations using additional information about one of the solutioncomponents. The problem is reduced to a nonlinear operator equation for one of the unknowncoefficients. The successive approximation method and the Newton method are used to solve thisoperator equation numerically. Results of calculations illustrating the convergence of numericalmethods for solving the inverse problem are presented. We consider the inverse problem of determining two unknown coefficients in a linear system of partial differential equations using additional information about one of the solution components. The problem is reduced to a nonlinear operator equation for one of the unknown coefficients. The successive approximation method and the Newton method are used to solve this operator equation numerically. Results of calculations illustrating the convergence of numerical methods for solving the inverse problem are presented. |
| Audience | Academic |
| Author | Gavrilov, S. V. Denisov, A. M. |
| Author_xml | – sequence: 1 givenname: S. V. surname: Gavrilov fullname: Gavrilov, S. V. email: gvrlserg@gmail.com organization: Lomonosov Moscow State University – sequence: 2 givenname: A. M. surname: Denisov fullname: Denisov, A. M. email: den@cs.msu.ru organization: Lomonosov Moscow State University |
| BookMark | eNp9kNtKAzEQhoMoWA8P4F1eYOtMssfLUuoBtArq9ZLNTmpkm2iyFXx7U-uVQpmLgfnnm4HvhB0674ixC4QposwvnwBQiLJEgVAB5HjAJlhCnUmo5SGbbONsmx-zkxjfAKCpsJgws9ysKVitBv7kh81oveP3NL76PnLjA1d86d1gHanAH94pqDENFx8b9bM5CzZat-LWceX4rfukEInPPRljtSU38sfgu4HWZ-zIqCHS-W8_ZS9Xi-f5TXb3cH07n91lWlYwZiiUbATKvjddXjQGKpKiUACqkXlP0GGuJXW6E6YoTWNK09Va1kYoFNDUKE_ZdHd3pQZqrTN-DEqn6mltdVJmbJrPKiylhFIUCcAdoIOPMZBp34Ndq_DVIrRbs-0_s4mp_jDajj9C0jM77CXFjozpi1tRaN_8JrhkZA_0DSW9jZk |
| CitedBy_id | crossref_primary_10_1134_S0012266122060040 crossref_primary_10_1134_S0012266122070084 |
| Cites_doi | 10.3103/S0278641918020024 10.1134/S0012266119070073 10.1088/0266-5611/12/3/010 10.1515/156939403322004955 10.1134/S0012266117070084 10.22436/jnsa.008.05.18 10.1134/S0012266120090049 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 COPYRIGHT 2021 Springer |
| Copyright_xml | – notice: The Author(s) 2019 – notice: COPYRIGHT 2021 Springer |
| DBID | C6C AAYXX CITATION |
| DOI | 10.1134/S0012266121070041 |
| DatabaseName | Springer Nature OA Free Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1608-3083 |
| EndPage | 875 |
| ExternalDocumentID | A716330625 10_1134_S0012266121070041 |
| GroupedDBID | --Z -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 04Q 04W 06D 0R~ 0VY 1N0 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 408 409 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABEFU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLLD ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAK LLZTM M0C M0N M2O M4Y M7S MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OHT OVD P2P P62 P9R PADUT PF0 PKN PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 XU3 YLTOR ~8M ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR CITATION M2P PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c370t-12a39213ddfb459f07e325a00a934de0b14c3ebcb2f56f9f6fb8c38f2a1209813 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686779200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0012-2661 |
| IngestDate | Sat Nov 29 09:58:21 EST 2025 Sat Nov 29 01:43:30 EST 2025 Tue Nov 18 21:48:51 EST 2025 Fri Feb 21 02:47:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-12a39213ddfb459f07e325a00a934de0b14c3ebcb2f56f9f6fb8c38f2a1209813 |
| OpenAccessLink | https://link.springer.com/10.1134/S0012266121070041 |
| PageCount | 8 |
| ParticipantIDs | gale_infotracacademiconefile_A716330625 crossref_primary_10_1134_S0012266121070041 crossref_citationtrail_10_1134_S0012266121070041 springer_journals_10_1134_S0012266121070041 |
| PublicationCentury | 2000 |
| PublicationDate | 20210700 2021-07-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow |
| PublicationTitle | Differential equations |
| PublicationTitleAbbrev | Diff Equat |
| PublicationYear | 2021 |
| Publisher | Pleiades Publishing Springer |
| Publisher_xml | – name: Pleiades Publishing – name: Springer |
| References | BimuratovS.Sh.KabanikhinS.I.Solution of one-dimensional inverse problems of electrodynamics by the Newton–Kantorovich methodComput. Math. Math. Phys.199232121729174312059930786.65099 Yan-BoMa.Newton method for estimation of the Robin coefficientJ. Nonlin. Sci. Appl.201585660669336131410.22436/jnsa.008.05.18 DenisovA.M.Existence and uniqueness of a solution of a system of nonlinear integral equationsDiffer. Equations202056911401147416524110.1134/S0012266120090049 KantorovichL.V.AkilovG.P.Funktsional’nyi analiz (Functional Analysis)1977MoscowNauka MonchL.A Newton method for solving inverse scattering problem for a sound-hard obstacleInverse Probl.1996123309324139154110.1088/0266-5611/12/3/010 DenisovA.M.Iterative method for solving an inverse coefficient problem for a hyperbolic equationDiffer. Equations2017537943949369162910.1134/S0012266117070084 SamarskiiA.A.VabishchevichP.N.Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki (Numerical Methods for Solving Inverse Problems of Mathematical Physics)2004MoscowEditorial URSS DenisovA.M.LukshinA.V.Matematicheskie modeli neravnovesnoi dinamiki sorbtsii (Mathematical Models of Nonequilibrium Sorption Dynamics)1989MoscowIzd. Mosk. Gos. Univ. TikhonovA.N.SamarskiiA.A.Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics)1999MoscowIzd. Mosk. Gos. Univ. KabanikhinS.I.ScherzerO.ShichleninM.A.Iteration method for solving a two-dimensional inverse problem for hyperbolic equationJ. Inverse Ill-Posed Probl.2003111123197216710.1515/156939403322004955 BaevA.V.GavrilovS.V.An iterative way of solving the inverse scattering problem for an acoustic system of equations in an absorptive layered nonhomogeneous mediumMosc. Univ. Comput. Math. Cybern.20184225562381376210.3103/S0278641918020024 DenisovA.M.Iterative method for solving an inverse problem for a hyperbolic equation with a small parameter multiplying the highest derivativeDiffer. Equations2019557940948399919810.1134/S0012266119070073 L. Monch (2232_CR5) 1996; 12 A.M. Denisov (2232_CR2) 1989 A.M. Denisov (2232_CR3) 2020; 56 L.V. Kantorovich (2232_CR12) 1977 A.N. Tikhonov (2232_CR1) 1999 A.A. Samarskii (2232_CR7) 2004 Ma. Yan-Bo (2232_CR8) 2015; 8 S.Sh. Bimuratov (2232_CR4) 1992; 32 S.I. Kabanikhin (2232_CR6) 2003; 11 A.V. Baev (2232_CR10) 2018; 42 A.M. Denisov (2232_CR11) 2019; 55 A.M. Denisov (2232_CR9) 2017; 53 |
| References_xml | – reference: BaevA.V.GavrilovS.V.An iterative way of solving the inverse scattering problem for an acoustic system of equations in an absorptive layered nonhomogeneous mediumMosc. Univ. Comput. Math. Cybern.20184225562381376210.3103/S0278641918020024 – reference: DenisovA.M.Iterative method for solving an inverse problem for a hyperbolic equation with a small parameter multiplying the highest derivativeDiffer. Equations2019557940948399919810.1134/S0012266119070073 – reference: KabanikhinS.I.ScherzerO.ShichleninM.A.Iteration method for solving a two-dimensional inverse problem for hyperbolic equationJ. Inverse Ill-Posed Probl.2003111123197216710.1515/156939403322004955 – reference: Yan-BoMa.Newton method for estimation of the Robin coefficientJ. Nonlin. Sci. Appl.201585660669336131410.22436/jnsa.008.05.18 – reference: KantorovichL.V.AkilovG.P.Funktsional’nyi analiz (Functional Analysis)1977MoscowNauka – reference: DenisovA.M.LukshinA.V.Matematicheskie modeli neravnovesnoi dinamiki sorbtsii (Mathematical Models of Nonequilibrium Sorption Dynamics)1989MoscowIzd. Mosk. Gos. Univ. – reference: DenisovA.M.Existence and uniqueness of a solution of a system of nonlinear integral equationsDiffer. Equations202056911401147416524110.1134/S0012266120090049 – reference: BimuratovS.Sh.KabanikhinS.I.Solution of one-dimensional inverse problems of electrodynamics by the Newton–Kantorovich methodComput. Math. Math. Phys.199232121729174312059930786.65099 – reference: TikhonovA.N.SamarskiiA.A.Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics)1999MoscowIzd. Mosk. Gos. Univ. – reference: SamarskiiA.A.VabishchevichP.N.Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki (Numerical Methods for Solving Inverse Problems of Mathematical Physics)2004MoscowEditorial URSS – reference: MonchL.A Newton method for solving inverse scattering problem for a sound-hard obstacleInverse Probl.1996123309324139154110.1088/0266-5611/12/3/010 – reference: DenisovA.M.Iterative method for solving an inverse coefficient problem for a hyperbolic equationDiffer. Equations2017537943949369162910.1134/S0012266117070084 – volume: 42 start-page: 55 issue: 2 year: 2018 ident: 2232_CR10 publication-title: Mosc. Univ. Comput. Math. Cybern. doi: 10.3103/S0278641918020024 – volume-title: Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics) year: 1999 ident: 2232_CR1 – volume-title: Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki (Numerical Methods for Solving Inverse Problems of Mathematical Physics) year: 2004 ident: 2232_CR7 – volume: 55 start-page: 940 issue: 7 year: 2019 ident: 2232_CR11 publication-title: Differ. Equations doi: 10.1134/S0012266119070073 – volume: 32 start-page: 1729 issue: 12 year: 1992 ident: 2232_CR4 publication-title: Comput. Math. Math. Phys. – volume: 12 start-page: 309 issue: 3 year: 1996 ident: 2232_CR5 publication-title: Inverse Probl. doi: 10.1088/0266-5611/12/3/010 – volume: 11 start-page: 1 issue: 1 year: 2003 ident: 2232_CR6 publication-title: J. Inverse Ill-Posed Probl. doi: 10.1515/156939403322004955 – volume: 53 start-page: 943 issue: 7 year: 2017 ident: 2232_CR9 publication-title: Differ. Equations doi: 10.1134/S0012266117070084 – volume-title: Funktsional’nyi analiz (Functional Analysis) year: 1977 ident: 2232_CR12 – volume: 8 start-page: 660 issue: 5 year: 2015 ident: 2232_CR8 publication-title: J. Nonlin. Sci. Appl. doi: 10.22436/jnsa.008.05.18 – volume-title: Matematicheskie modeli neravnovesnoi dinamiki sorbtsii (Mathematical Models of Nonequilibrium Sorption Dynamics) year: 1989 ident: 2232_CR2 – volume: 56 start-page: 1140 issue: 9 year: 2020 ident: 2232_CR3 publication-title: Differ. Equations doi: 10.1134/S0012266120090049 |
| SSID | ssj0009715 |
| Score | 2.2120748 |
| Snippet | We consider the inverse problem of determining two unknown coefficients in a linear system of partial differential equations using additional information about... We consider the inverse problem of determining two unknown coefficients in a linearsystem of partial differential equations using additional information about... |
| SourceID | gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 868 |
| SubjectTerms | Difference and Functional Equations Differential equations Mathematics Mathematics and Statistics Methods Numerical Methods Ordinary Differential Equations Partial Differential Equations |
| Title | Numerical Solution Methods for a Nonlinear Operator Equation Arising in an Inverse Coefficient Problem |
| URI | https://link.springer.com/article/10.1134/S0012266121070041 |
| Volume | 57 |
| WOSCitedRecordID | wos000686779200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1608-3083 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009715 issn: 0012-2661 databaseCode: RSV dateStart: 20000101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6iHvSgtirWjRwENwYyyWw5llLxYGtxKd6GrFAo09pp_f0mmYxSXEDvmSRMlu-9vPe-D4AzLCNFZUaDVClLqp1EgYFhm5ajDZgYCx25lP_hXdrvZy8vdODruMs6270OSbqbutIdiWxNb4gtnBgnxXKyG5dnzaBdZvUaHh6Hn0y7aS1bgAPb3Icyv-1iCYzqK3k5IOpw5mb7XzPcAVverITtah80wIoqmmCz98HJWjZBwx_jEl54runLXaD7iypkM4b1AxnsOVHpEhpzFjLYr7g02AzeT5WLycPua8UPboYb2acGOCogK6Cl7JiVCnYmyvFSGDiDg0qvZg8833SfOreBl14IBEnRPAgxM4ZTSKTUPIqpRqkiOGYIMUoiqRAPI0EUFxzrONFUJ5pngmQaM1uLm4VkH6wWk0IdABhmPMmYVIwaVy8VmKNERhRRIRnHnMoWQPUa5MLzklt5jHHu_BMS5V_-awtcfXwyrUg5fmt8bhc2twfW9CuYrzsws7PUV3nbeIzEOE44boHrel1zf5LLn_s9_FPrI7CBbTaMS_Q9Bqvz2UKdgHXxNh-Vs1O3g98B6y3lrQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rSxwxEB-KLagf2p4PvFprPhTqg4VsktvdfBRRLN5tpT7w25InHByr3t759zfJZhXxAfZ7dhI2mfxmMjO_AfhJNDNcFzzJjfGk2hlLHAz7tBzrwMRZ6Dik_F8N87Isrq_5Wazjbrps9y4kGW7qtu8I8zW9KfFw4pwUz8nuXJ6PzAGWJ8z_e371yLSbd20LSOKHx1DmiyKegFF3JT8NiAacOf7yXyv8Cp-jWYkO2nPQgw-mXoHl0QMna7MCvajGDdqJXNO7q2DLeRuymaDugQyNQlPpBjlzFglUtlwaYor-3JoQk0dHdy0_uJtu7J8a0LhGokaesmPaGHR4YwIvhYMzdNb2q1mDy-Oji8OTJLZeSBTN8SxJiXCGU0q1tpINuMW5oWQgMBacMm2wTJmiRipJ7CCz3GZWFooWlghfi1ukdB0W6pvabABKC5kVQhvBnauXKyJxphnHXGkhieS6D7jbg0pFXnLfHmNSBf-EsurZf-3D3sMnty0px1uDf_mNrbzCOrlKxLoDtzpPfVUdOI-ROseJDPqw3-1rFTW5eV3ut3eN3obFk4vRsBr-Lk83YYn4zJiQ9PsdFmbTudmCT-p-Nm6mP8Jp_ge3O-iR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VUFVwgEKpWB6tD5X6QFEd25vER0RZtSqkK5UibpGf0kqrsGwWfj-exAEhaCXUu-NYsSczn2fm-wA-MCuctIVMcueQVDsTSXDDWJbjgzMJETptS_7PT_KyLC4u5DjqnDZ9tXufkux6GpClqV58nVkfNUgE9vemDF1LACzIzx7gz7LAOnqE67_P71l3817CgCU4PKY1n5zigWPqf88Pk6Otzxmt__dqX8NaDDfJYXc-NuCFqzdh9fSOq7XZhI1o3g35FDmoP78BX153qZwp6S_OyGkrNt2QEOYSRcqOY0PNya-Za3P15Piq4w0Pr5vgFQSZ1ETVBKk85o0jR5eu5asICyfjTsdmC_6Mjs-OvidRkiExPKeLJGUqBFQpt9ZrMZSe5o6zoaJUSS6sozoVhjttNPPDzEufeV0YXnimsEe3SPlbWKova7cNJC10VijrlAwQMDdM08wKSaWxSjMt7QBovx-ViXzlKJsxrVrcwkX16LsO4MvdI7OOrONfgz_iJldoyGFeo2I_QlgdUmJVhwFJ8gCo2HAAB_0eV9HCm7_Pu_Os0e_h1fjbqDr5Uf7chRWGBTNtLfAeLC3m124fXpqbxaSZv2sP9i1dBPF1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Solution+Methods+for+a+Nonlinear+Operator+Equation+Arising+in+an+Inverse+Coefficient+Problem&rft.jtitle=Differential+equations&rft.au=Gavrilov%2C+S.+V.&rft.au=Denisov%2C+A.+M.&rft.date=2021-07-01&rft.pub=Pleiades+Publishing&rft.issn=0012-2661&rft.eissn=1608-3083&rft.volume=57&rft.issue=7&rft.spage=868&rft.epage=875&rft_id=info:doi/10.1134%2FS0012266121070041&rft.externalDocID=10_1134_S0012266121070041 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-2661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-2661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-2661&client=summon |