On causal and non‐causal cointegrated vector autoregressive time series

Previous‐30 treatments of multivariate non‐causal time series have assumed stationarity. In this article, we consider integrated processes in a non‐causal setting. We generalize the Johansen–Granger representation for causal vector autoregressive (VAR) models to allow for dependence on future errors...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of time series analysis Ročník 43; číslo 2; s. 178 - 196
Hlavní autor: Rygh Swensen, Anders
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK John Wiley & Sons, Ltd 01.03.2022
Blackwell Publishing Ltd
Témata:
ISSN:0143-9782, 1467-9892
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Previous‐30 treatments of multivariate non‐causal time series have assumed stationarity. In this article, we consider integrated processes in a non‐causal setting. We generalize the Johansen–Granger representation for causal vector autoregressive (VAR) models to allow for dependence on future errors and discuss how the parameters can be estimated. The asymptotic distribution of the trace statistic is also considered. Some Monte Carlo simulations are presented.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0143-9782
1467-9892
DOI:10.1111/jtsa.12607