On causal and non‐causal cointegrated vector autoregressive time series

Previous‐30 treatments of multivariate non‐causal time series have assumed stationarity. In this article, we consider integrated processes in a non‐causal setting. We generalize the Johansen–Granger representation for causal vector autoregressive (VAR) models to allow for dependence on future errors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis Jg. 43; H. 2; S. 178 - 196
1. Verfasser: Rygh Swensen, Anders
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK John Wiley & Sons, Ltd 01.03.2022
Blackwell Publishing Ltd
Schlagworte:
ISSN:0143-9782, 1467-9892
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous‐30 treatments of multivariate non‐causal time series have assumed stationarity. In this article, we consider integrated processes in a non‐causal setting. We generalize the Johansen–Granger representation for causal vector autoregressive (VAR) models to allow for dependence on future errors and discuss how the parameters can be estimated. The asymptotic distribution of the trace statistic is also considered. Some Monte Carlo simulations are presented.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0143-9782
1467-9892
DOI:10.1111/jtsa.12607