Improvement of the Fast Clustering Algorithm Improved by K-Means in the Big Data

Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and -means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by -means. Diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and nonlinear sciences Jg. 5; H. 1; S. 1 - 10
Hauptverfasser: Xie, Ting, Liu, Ruihua, Wei, Zhengyuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Beirut Sciendo 01.01.2020
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Schlagworte:
ISSN:2444-8656, 2444-8656
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and -means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by -means. Different from the traditional methods, the algorithm guaranteed the consistency of the clustering accuracy before and after descending dimension, accelerated -means when the clustering centeres and distance functions satisfy certain conditions, completely matched in the preprocessing step and clustering step, and improved the efficiency and accuracy. Experimental results have demonstrated the effectiveness of the proposed algorithm.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2444-8656
2444-8656
DOI:10.2478/amns.2020.1.00001