Improvement of the Fast Clustering Algorithm Improved by K-Means in the Big Data

Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and -means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by -means. Diff...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and nonlinear sciences Ročník 5; číslo 1; s. 1 - 10
Hlavní autoři: Xie, Ting, Liu, Ruihua, Wei, Zhengyuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beirut Sciendo 01.01.2020
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:2444-8656, 2444-8656
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Clustering as a fundamental unsupervised learning is considered an important method of data analysis, and -means is demonstrably the most popular clustering algorithm. In this paper, we consider clustering on feature space to solve the low efficiency caused in the Big Data clustering by -means. Different from the traditional methods, the algorithm guaranteed the consistency of the clustering accuracy before and after descending dimension, accelerated -means when the clustering centeres and distance functions satisfy certain conditions, completely matched in the preprocessing step and clustering step, and improved the efficiency and accuracy. Experimental results have demonstrated the effectiveness of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2444-8656
2444-8656
DOI:10.2478/amns.2020.1.00001