The Aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications

Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO 2 -NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynth...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances Vol. 10; no. 33; pp. 19219 - 19231
Main Authors: Jan, Hasnain, Khan, Muhammad Aslam, Usman, Hazrat, Shah, Muzamil, Ansir, Rotaba, Faisal, Shah, Ullah, Niamat, Rahman, Lubna
Format: Journal Article
Language:English
Published: England Royal Society of Chemistry 20.05.2020
The Royal Society of Chemistry
Subjects:
ISSN:2046-2069, 2046-2069
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO 2 -NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO 2 -NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC 50 values toward both the amastigote (114 μg mL −1 ) and promastigote (97 μg mL −1 ) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL −1 . Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO 2 -NPs a novel candidates for multidimensional medical applications.
AbstractList Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO₂-NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO₂-NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC₅₀ values toward both the amastigote (114 μg mL⁻¹) and promastigote (97 μg mL⁻¹) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL⁻¹. Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO₂-NPs a novel candidates for multidimensional medical applications.
Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO2-NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO2-NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC50 values toward both the amastigote (114 μg mL-1) and promastigote (97 μg mL-1) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL-1. Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO2-NPs a novel candidates for multidimensional medical applications.Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO2-NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO2-NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC50 values toward both the amastigote (114 μg mL-1) and promastigote (97 μg mL-1) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL-1. Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO2-NPs a novel candidates for multidimensional medical applications.
Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO 2 -NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO 2 -NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC 50 values toward both the amastigote (114 μg mL −1 ) and promastigote (97 μg mL −1 ) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL −1 . Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO 2 -NPs a novel candidates for multidimensional medical applications.
Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO2-NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO2-NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC50 values toward both the amastigote (114 μg mL−1) and promastigote (97 μg mL−1) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL−1. Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO2-NPs a novel candidates for multidimensional medical applications. Graphical illustration of eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications.
Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO -NPs) were synthesized using a simple aqueous extract of as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the mediated CeO -NPs were highly active against fungal strains, compared to the tested bacterial strains, with resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC values toward both the amastigote (114 μg mL ) and promastigote (97 μg mL ) forms of the parasite (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL . Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO -NPs a novel candidates for multidimensional medical applications.
Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO2-NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO2-NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC50 values toward both the amastigote (114 μg mL−1) and promastigote (97 μg mL−1) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL−1. Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO2-NPs a novel candidates for multidimensional medical applications.
Author Jan, Hasnain
Rahman, Lubna
Ullah, Niamat
Ansir, Rotaba
Khan, Muhammad Aslam
Usman, Hazrat
Shah, Muzamil
Faisal, Shah
Author_xml – sequence: 1
  givenname: Hasnain
  orcidid: 0000-0002-7225-2595
  surname: Jan
  fullname: Jan, Hasnain
  organization: Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan, Department of Biotechnology
– sequence: 2
  givenname: Muhammad Aslam
  surname: Khan
  fullname: Khan, Muhammad Aslam
  organization: Department of Biotechnology, International Islamic University, Islamabad, Pakistan
– sequence: 3
  givenname: Hazrat
  surname: Usman
  fullname: Usman, Hazrat
  organization: Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
– sequence: 4
  givenname: Muzamil
  surname: Shah
  fullname: Shah, Muzamil
  organization: Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
– sequence: 5
  givenname: Rotaba
  orcidid: 0000-0002-0767-5161
  surname: Ansir
  fullname: Ansir, Rotaba
  organization: Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
– sequence: 6
  givenname: Shah
  surname: Faisal
  fullname: Faisal, Shah
  organization: Department of Biotechnology, Bacha Khan University, Pakistan
– sequence: 7
  givenname: Niamat
  surname: Ullah
  fullname: Ullah, Niamat
  organization: Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
– sequence: 8
  givenname: Lubna
  surname: Rahman
  fullname: Rahman, Lubna
  organization: Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35515478$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1LHDEUhoNY6ke98QdIwBstbJuPSWbmRtjaDwtCodjrkElO3Eg22U1mhP33jVVbK4LJRQ7kOS_ve5I9tB1TBIQOKflACe8_fiY_54T2Lf20hXYZaeSMEdlvP6l30EEpN6QuKSiT9C3a4UJQ0bTdLlpfLQDP15MPcO01Xk2DdyFljU8u_FIHvdERmxSm5eAjnOIlWK9HsLhs4riA4gtODkcdk4Fc-13K2PpbyAXw4NMdbnTAerUKtRh9iuUdeuN0KHDwcO6jX1-_XJ1fzC5_fPt-Pr-cGS77cWbbar03YKQ0VDvqZMeYaYi0lg2StI0VdOi0M0RYEHUTRztDJQhuLXDK99HZvW7NVH0YiGPWQa1yzZU3Kmmv_r-JfqGu063qiWhI11eBkweBnNYTlFEtfTEQgo6QpqKYlJR0rM7ydVS0DZe8Ebyix8_QmzTlWCehWE3Xs5YzVqmjp-b_un58uAqQe8DkVEoGp4wf_wy4ZvFBUaLuvof69z1qy_tnLY-qL8C_ATWJuy4
CitedBy_id crossref_primary_10_1016_j_jelechem_2021_115401
crossref_primary_10_1016_j_mtchem_2023_101894
crossref_primary_10_1016_j_rechem_2022_100591
crossref_primary_10_1371_journal_pone_0310997
crossref_primary_10_1016_j_jksus_2024_103256
crossref_primary_10_1016_j_jece_2023_111328
crossref_primary_10_1016_j_jpcs_2023_111748
crossref_primary_10_1016_j_heliyon_2024_e25285
crossref_primary_10_1016_j_molstruc_2024_141017
crossref_primary_10_1007_s11468_023_02142_y
crossref_primary_10_1016_j_bse_2022_104462
crossref_primary_10_1016_j_rsurfi_2025_100562
crossref_primary_10_1007_s12668_023_01114_0
crossref_primary_10_1007_s42247_024_00651_y
crossref_primary_10_1016_j_sjbs_2021_05_035
crossref_primary_10_1016_j_sjbs_2021_02_044
crossref_primary_10_1080_10667857_2024_2334515
crossref_primary_10_3390_coatings11070849
crossref_primary_10_1016_j_envres_2023_116148
crossref_primary_10_3390_molecules27196207
crossref_primary_10_1016_j_bcab_2021_102176
crossref_primary_10_1016_j_envres_2023_118001
crossref_primary_10_1186_s12906_021_03333_y
crossref_primary_10_1002_jmr_3015
crossref_primary_10_1016_j_jics_2024_101302
crossref_primary_10_1002_slct_202502134
crossref_primary_10_1016_j_ceramint_2020_11_230
crossref_primary_10_1088_2053_1591_ad68cf
crossref_primary_10_3390_mi13050668
crossref_primary_10_1007_s10904_023_02751_4
crossref_primary_10_1016_j_ijbiomac_2022_03_162
crossref_primary_10_1016_j_inoche_2025_114576
crossref_primary_10_1038_s41598_025_14654_0
crossref_primary_10_1051_e3sconf_202345301018
crossref_primary_10_1016_j_heliyon_2024_e40818
crossref_primary_10_1002_jemt_23726
crossref_primary_10_1007_s00449_025_03176_8
crossref_primary_10_3390_mi13081259
crossref_primary_10_1007_s10653_024_02104_1
crossref_primary_10_1016_j_ijbiomac_2024_136704
crossref_primary_10_1038_s41598_024_68272_3
crossref_primary_10_1016_j_colsurfb_2025_114798
crossref_primary_10_1155_2022_5994033
crossref_primary_10_1038_s41598_024_52217_x
crossref_primary_10_3390_ijms25010681
crossref_primary_10_3390_catal11070780
crossref_primary_10_1038_s41598_024_76475_x
crossref_primary_10_1016_j_ceramint_2022_09_087
crossref_primary_10_1007_s10876_023_02512_w
crossref_primary_10_1080_23311932_2023_2293332
crossref_primary_10_1007_s42452_025_06915_4
crossref_primary_10_1088_1361_6528_abc2eb
crossref_primary_10_1016_j_bcdf_2023_100368
crossref_primary_10_1016_j_jscs_2021_101297
Cites_doi 10.1016/j.btre.2017.11.008
10.1016/j.procbio.2013.10.007
10.1016/j.cossms.2014.11.005
10.1021/nn300934k
10.1038/s41598-017-04098-6
10.1002/adma.201901556
10.1039/C2TB00132B
10.1111/j.1151-2916.2000.tb01371.x
10.1088/2053-1591/aaee44
10.1084/jem.153.5.1302
10.1128/AEM.63.8.2971-2976.1997
10.1016/j.jphotobiol.2016.07.029
10.2147/IJN.S113508
10.1016/j.jep.2014.11.016
10.1021/mp300382n
10.1016/j.bmcl.2013.03.029
10.1038/ja.2017.30
10.1016/j.ceramint.2013.10.026
10.1016/j.actatropica.2017.04.029
10.1016/j.jphotobiol.2016.05.003
10.1186/s12906-017-1951-5
10.1016/j.jallcom.2017.07.054
10.1002/jcp.27303
10.1021/nn800511k
10.3109/17435390.2012.739665
10.1021/jf803011r
10.1016/j.bios.2017.04.037
10.1080/09637480601093269
10.1021/nl052326h
10.1063/1.5032379
10.5588/pha.13.0037
10.1021/nn100816s
10.1002/jps.20627
10.1093/jn/133.9.2812
10.1016/S0254-6272(17)30017-1
10.1111/j.1472-765X.2004.01553.x
10.1016/j.ceramint.2011.05.063
10.1039/C5RA13206A
10.1016/j.jphotobiol.2016.05.019
10.1016/j.apsusc.2017.01.219
10.9767/bcrec.5.1.7125.7-30
10.18632/oncotarget.9969
10.1016/j.apsusc.2016.02.161
10.1038/s41598-018-25390-z
10.1016/j.msec.2015.01.042
10.1016/j.jep.2015.11.039
10.1186/s12951-017-0308-z
10.1016/j.tiv.2013.06.002
10.1016/j.foodchem.2009.10.030
10.1016/j.msec.2020.110889
10.1016/j.jiec.2016.03.032
10.1093/mnrasl/slt106
10.1021/es103309n
10.1038/nrendo.2016.105
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2020
This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2020
– notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/D0RA01971B
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
CrossRef

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 19231
ExternalDocumentID PMC9054089
35515478
10_1039_D0RA01971B
Genre Journal Article
GroupedDBID 0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AFVBQ
AGMRB
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CITATION
EBS
EE0
EF-
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
ZCN
-JG
ABGFH
AGEGJ
AGSTE
NPM
SMJ
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c369t-d70699cec66c1af1f6822c406dd2b6074d51b8afc05de5e5e0f18c16e53dde313
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537781700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2046-2069
IngestDate Tue Nov 04 01:54:34 EST 2025
Thu Sep 04 20:22:26 EDT 2025
Thu Oct 02 07:45:09 EDT 2025
Fri Sep 12 10:30:35 EDT 2025
Thu Jan 02 22:54:22 EST 2025
Tue Nov 18 22:35:30 EST 2025
Sat Nov 29 06:11:58 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-d70699cec66c1af1f6822c406dd2b6074d51b8afc05de5e5e0f18c16e53dde313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7225-2595
0000-0002-0767-5161
OpenAccessLink http://dx.doi.org/10.1039/d0ra01971b
PMID 35515478
PQID 2406927322
PQPubID 2047525
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9054089
proquest_miscellaneous_2661082355
proquest_miscellaneous_2574363453
proquest_journals_2406927322
pubmed_primary_35515478
crossref_citationtrail_10_1039_D0RA01971B
crossref_primary_10_1039_D0RA01971B
PublicationCentury 2000
PublicationDate 20200520
PublicationDateYYYYMMDD 2020-05-20
PublicationDate_xml – month: 5
  year: 2020
  text: 20200520
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2020
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Zimmet (D0RA01971B-(cit55)/*[position()=1]) 2016; 12
Thatoi (D0RA01971B-(cit12)/*[position()=1]) 2016; 163
Xia (D0RA01971B-(cit42)/*[position()=1]) 2008; 2
Li (D0RA01971B-(cit49)/*[position()=1]) 2012; 6
Morais (D0RA01971B-(cit16)/*[position()=1]) 2013; 436
Pellegrini (D0RA01971B-(cit57)/*[position()=1]) 2003; 133
Ahmad (D0RA01971B-(cit18)/*[position()=1]) 2016; 36
Hano (D0RA01971B-(cit21)/*[position()=1]) 2013; 23
Howlett (D0RA01971B-(cit43)/*[position()=1]) 1997; 63
Ahmad (D0RA01971B-(cit47)/*[position()=1]) 2016; 161
Lu (D0RA01971B-(cit51)/*[position()=1]) 2016; 7
Ahmad (D0RA01971B-(cit19)/*[position()=1]) 2015; 5
Matinise (D0RA01971B-(cit24)/*[position()=1]) 2017; 406
Asati (D0RA01971B-(cit54)/*[position()=1]) 2010; 4
Maqbool (D0RA01971B-(cit31)/*[position()=1]) 2016; 11
Adnan (D0RA01971B-(cit15)/*[position()=1]) 2012; 6
Nair (D0RA01971B-(cit56)/*[position()=1]) 2013; 3
Yang (D0RA01971B-(cit52)/*[position()=1]) 2019
Slavin (D0RA01971B-(cit39)/*[position()=1]) 2017; 15
Prakash (D0RA01971B-(cit58)/*[position()=1]) 2007; 58
Charbgoo (D0RA01971B-(cit2)/*[position()=1]) 2017; 96
Martens (D0RA01971B-(cit38)/*[position()=1]) 2017; 70
Arumugam (D0RA01971B-(cit34)/*[position()=1]) 2015; 49
Prasad (D0RA01971B-(cit40)/*[position()=1]) 2010; 5
Surendra (D0RA01971B-(cit32)/*[position()=1]) 2016; 161
Bylka (D0RA01971B-(cit25)/*[position()=1]) 2004; 39
Amin (D0RA01971B-(cit61)/*[position()=1]) 2006; 95
Mushtaq (D0RA01971B-(cit26)/*[position()=1]) 2016; 178
Evans (D0RA01971B-(cit60)/*[position()=1]) 2013
Hussain (D0RA01971B-(cit14)/*[position()=1]) 2011; 43
Mushtaq (D0RA01971B-(cit20)/*[position()=1]) 2019
Zhang (D0RA01971B-(cit7)/*[position()=1]) 2011; 45
Caputo (D0RA01971B-(cit5)/*[position()=1]) 2017; 7
Ahmed (D0RA01971B-(cit13)/*[position()=1]) 2015; 159
Castano (D0RA01971B-(cit4)/*[position()=1]) 2015; 19
Kumar (D0RA01971B-(cit48)/*[position()=1]) 2016; 37
Zahra (D0RA01971B-(cit22)/*[position()=1]) 2017; 17
Munusamy (D0RA01971B-(cit35)/*[position()=1]) 2014; 2
Demokritou (D0RA01971B-(cit8)/*[position()=1]) 2013; 7
Tagliazucchi (D0RA01971B-(cit23)/*[position()=1]) 2010; 120
Akbari (D0RA01971B-(cit45)/*[position()=1]) 2017; 172
Walkey (D0RA01971B-(cit1)/*[position()=1]) 2015; 2
Modena (D0RA01971B-(cit36)/*[position()=1]) 2019; 31
Jebali (D0RA01971B-(cit46)/*[position()=1]) 2013; 27
Ali (D0RA01971B-(cit30)/*[position()=1]) 2018; 6
Ali (D0RA01971B-(cit27)/*[position()=1]) 2018; 1953
Tong (D0RA01971B-(cit44)/*[position()=1]) 2013; 1
Murray (D0RA01971B-(cit50)/*[position()=1]) 1981; 153
Rohini (D0RA01971B-(cit29)/*[position()=1]) 2017; 724
Nourmohammadi (D0RA01971B-(cit53)/*[position()=1]) 2019; 234
Wang (D0RA01971B-(cit28)/*[position()=1]) 2016; 370
Rajeshkumar (D0RA01971B-(cit3)/*[position()=1]) 2018; 17
Vimala (D0RA01971B-(cit37)/*[position()=1]) 2014; 49
He (D0RA01971B-(cit10)/*[position()=1]) 2012; 38
Darroudi (D0RA01971B-(cit11)/*[position()=1]) 2014; 40
Brayner (D0RA01971B-(cit41)/*[position()=1]) 2006; 6
Rojas (D0RA01971B-(cit6)/*[position()=1]) 2012; 9
Hirano (D0RA01971B-(cit9)/*[position()=1]) 2000; 83
Shah (D0RA01971B-(cit17)/*[position()=1]) 2020
Eriksson (D0RA01971B-(cit33)/*[position()=1]) 2018; 8
Dudonne (D0RA01971B-(cit59)/*[position()=1]) 2009; 57
References_xml – volume: 17
  start-page: 1
  year: 2018
  ident: D0RA01971B-(cit3)/*[position()=1]
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2017.11.008
– volume: 2
  start-page: 33
  year: 2015
  ident: D0RA01971B-(cit1)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 49
  start-page: 160
  year: 2014
  ident: D0RA01971B-(cit37)/*[position()=1]
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2013.10.007
– volume: 19
  start-page: 69
  year: 2015
  ident: D0RA01971B-(cit4)/*[position()=1]
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2014.11.005
– volume: 6
  start-page: 5164
  year: 2012
  ident: D0RA01971B-(cit49)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn300934k
– volume: 7
  start-page: 4636
  year: 2017
  ident: D0RA01971B-(cit5)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04098-6
– volume: 31
  start-page: 1901556
  year: 2019
  ident: D0RA01971B-(cit36)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901556
– volume: 2
  start-page: 318
  year: 2014
  ident: D0RA01971B-(cit35)/*[position()=1]
  publication-title: International Journal of Innovative Research in Science, Engineering and Technology
– volume: 1
  start-page: 454
  year: 2013
  ident: D0RA01971B-(cit44)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C2TB00132B
– volume: 83
  start-page: 1287
  year: 2000
  ident: D0RA01971B-(cit9)/*[position()=1]
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2000.tb01371.x
– volume: 6
  start-page: 025513
  year: 2018
  ident: D0RA01971B-(cit30)/*[position()=1]
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aaee44
– volume: 153
  start-page: 1302
  year: 1981
  ident: D0RA01971B-(cit50)/*[position()=1]
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.153.5.1302
– volume: 43
  start-page: 79
  year: 2011
  ident: D0RA01971B-(cit14)/*[position()=1]
  publication-title: Pak. J. Bot.
– volume: 63
  start-page: 2971
  year: 1997
  ident: D0RA01971B-(cit43)/*[position()=1]
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.63.8.2971-2976.1997
– start-page: e50166
  year: 2013
  ident: D0RA01971B-(cit60)/*[position()=1]
  publication-title: J. Visualized Exp.
– volume: 163
  start-page: 311
  year: 2016
  ident: D0RA01971B-(cit12)/*[position()=1]
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2016.07.029
– volume: 11
  start-page: 5015
  year: 2016
  ident: D0RA01971B-(cit31)/*[position()=1]
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S113508
– volume: 159
  start-page: 209
  year: 2015
  ident: D0RA01971B-(cit13)/*[position()=1]
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2014.11.016
– volume: 9
  start-page: 3543
  year: 2012
  ident: D0RA01971B-(cit6)/*[position()=1]
  publication-title: Mol. Pharm.
  doi: 10.1021/mp300382n
– volume: 23
  start-page: 3007
  year: 2013
  ident: D0RA01971B-(cit21)/*[position()=1]
  publication-title: Bioorg. Med. Chem. Lett
  doi: 10.1016/j.bmcl.2013.03.029
– volume: 70
  start-page: 520
  year: 2017
  ident: D0RA01971B-(cit38)/*[position()=1]
  publication-title: J. Antibiot.
  doi: 10.1038/ja.2017.30
– volume: 40
  start-page: 2863
  year: 2014
  ident: D0RA01971B-(cit11)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.10.026
– volume: 172
  start-page: 86
  year: 2017
  ident: D0RA01971B-(cit45)/*[position()=1]
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2017.04.029
– volume: 161
  start-page: 17
  year: 2016
  ident: D0RA01971B-(cit47)/*[position()=1]
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2016.05.003
– volume: 17
  start-page: 443
  year: 2017
  ident: D0RA01971B-(cit22)/*[position()=1]
  publication-title: BMC Compl. Alternative Med.
  doi: 10.1186/s12906-017-1951-5
– volume: 724
  start-page: 897
  year: 2017
  ident: D0RA01971B-(cit29)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.07.054
– volume: 234
  start-page: 4987
  year: 2019
  ident: D0RA01971B-(cit53)/*[position()=1]
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.27303
– volume: 2
  start-page: 2121
  year: 2008
  ident: D0RA01971B-(cit42)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn800511k
– volume: 7
  start-page: 1338
  year: 2013
  ident: D0RA01971B-(cit8)/*[position()=1]
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2012.739665
– volume: 57
  start-page: 1768
  year: 2009
  ident: D0RA01971B-(cit59)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf803011r
– volume: 96
  start-page: 33
  year: 2017
  ident: D0RA01971B-(cit2)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.04.037
– volume: 58
  start-page: 18
  year: 2007
  ident: D0RA01971B-(cit58)/*[position()=1]
  publication-title: Int. J. Nutr. Food Sci.
  doi: 10.1080/09637480601093269
– volume: 6
  start-page: 866
  year: 2006
  ident: D0RA01971B-(cit41)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl052326h
– volume: 1953
  start-page: 030044
  year: 2018
  ident: D0RA01971B-(cit27)/*[position()=1]
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5032379
– volume: 3
  start-page: 38
  year: 2013
  ident: D0RA01971B-(cit56)/*[position()=1]
  publication-title: Public Health Action
  doi: 10.5588/pha.13.0037
– volume: 6
  start-page: 4113
  year: 2012
  ident: D0RA01971B-(cit15)/*[position()=1]
  publication-title: J. Med. Plants Res.
– volume: 4
  start-page: 5321
  year: 2010
  ident: D0RA01971B-(cit54)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn100816s
– volume: 95
  start-page: 1173
  year: 2006
  ident: D0RA01971B-(cit61)/*[position()=1]
  publication-title: J. Pharmaceut. Sci.
  doi: 10.1002/jps.20627
– volume: 133
  start-page: 2812
  year: 2003
  ident: D0RA01971B-(cit57)/*[position()=1]
  publication-title: J. Nutr.
  doi: 10.1093/jn/133.9.2812
– start-page: 1
  year: 2019
  ident: D0RA01971B-(cit20)/*[position()=1]
  publication-title: Arabian J. Sci. Eng.
– volume: 36
  start-page: 794
  year: 2016
  ident: D0RA01971B-(cit18)/*[position()=1]
  publication-title: J. Tradit. Chin. Med.
  doi: 10.1016/S0254-6272(17)30017-1
– volume: 39
  start-page: 93
  year: 2004
  ident: D0RA01971B-(cit25)/*[position()=1]
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/j.1472-765X.2004.01553.x
– volume: 38
  start-page: S501
  year: 2012
  ident: D0RA01971B-(cit10)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2011.05.063
– volume: 5
  start-page: 73793
  year: 2015
  ident: D0RA01971B-(cit19)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA13206A
– volume: 161
  start-page: 122
  year: 2016
  ident: D0RA01971B-(cit32)/*[position()=1]
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2016.05.019
– volume: 406
  start-page: 339
  year: 2017
  ident: D0RA01971B-(cit24)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.01.219
– volume: 5
  start-page: 7
  year: 2010
  ident: D0RA01971B-(cit40)/*[position()=1]
  publication-title: Bull. Chem. React. Eng. Catal.
  doi: 10.9767/bcrec.5.1.7125.7-30
– volume: 7
  start-page: 45889
  year: 2016
  ident: D0RA01971B-(cit51)/*[position()=1]
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9969
– volume: 370
  start-page: 83
  year: 2016
  ident: D0RA01971B-(cit28)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.02.161
– volume: 8
  start-page: 6999
  year: 2018
  ident: D0RA01971B-(cit33)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25390-z
– volume: 49
  start-page: 408
  year: 2015
  ident: D0RA01971B-(cit34)/*[position()=1]
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2015.01.042
– volume: 178
  start-page: 9
  year: 2016
  ident: D0RA01971B-(cit26)/*[position()=1]
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2015.11.039
– volume: 15
  start-page: 65
  year: 2017
  ident: D0RA01971B-(cit39)/*[position()=1]
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-017-0308-z
– volume: 27
  start-page: 1896
  year: 2013
  ident: D0RA01971B-(cit46)/*[position()=1]
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2013.06.002
– volume: 120
  start-page: 599
  year: 2010
  ident: D0RA01971B-(cit23)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2009.10.030
– start-page: 110889
  year: 2020
  ident: D0RA01971B-(cit17)/*[position()=1]
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2020.110889
– volume: 37
  start-page: 224
  year: 2016
  ident: D0RA01971B-(cit48)/*[position()=1]
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.03.032
– volume: 436
  start-page: L30
  year: 2013
  ident: D0RA01971B-(cit16)/*[position()=1]
  publication-title: Mon. Not. Roy. Astron. Soc. Lett.
  doi: 10.1093/mnrasl/slt106
– volume: 45
  start-page: 3725
  year: 2011
  ident: D0RA01971B-(cit7)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103309n
– volume: 12
  start-page: 616
  year: 2016
  ident: D0RA01971B-(cit55)/*[position()=1]
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2016.105
– start-page: 1
  year: 2019
  ident: D0RA01971B-(cit52)/*[position()=1]
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
SSID ssj0000651261
Score 2.5305264
Snippet Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 19219
SubjectTerms antileishmanial properties
Antioxidants
Aquilegia
Aspergillus niger
Biocompatibility
Biomedical materials
biosynthesis
Capping
Cerium oxides
Chemistry
dose response
Electron microscopy
Erythrocytes
Fourier transform infrared spectroscopy
Fourier transforms
fungi
Fungicides
High-performance liquid chromatography
human cell lines
humans
Infrared spectroscopy
Kinases
Leishmania tropica
Microscopy
Morphology
nanoceria
Nanoparticles
parasites
protein kinases
Raman spectroscopy
Spectrum analysis
Synthesis
transmission electron microscopy
ultraviolet-visible spectroscopy
X ray powder diffraction
X-ray diffraction
Title The Aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications
URI https://www.ncbi.nlm.nih.gov/pubmed/35515478
https://www.proquest.com/docview/2406927322
https://www.proquest.com/docview/2574363453
https://www.proquest.com/docview/2661082355
https://pubmed.ncbi.nlm.nih.gov/PMC9054089
Volume 10
WOSCitedRecordID wos000537781700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6gQQviG8KozKCByYUiO06iR-rAuoDm9DYpL1VjuPQSK27re207YEfxK_kOk6cdKvQeECVosofUeJ7Yh_7Xh8j9I7qtC-zvgy4UHZLTj8LhNQkgMGNxqnUUZ6W6vrf4v395PhYfO90ftd7Yc6nsTHJxYU4-a-mhjQwtt06-w_m9jeFBPgPRocrmB2utzb84HQFX_vPQloZ6yKHObm0VHJUzORUXkobeg6dUupERt3uEcs8F5cG-GAlUWKkgbENHriMRMzK-A39wW3XdxIDLd93m-Me_BjWoQVNfKJbZx3JhZFF4_ifuOS91UTOZjIDsEzlrM49WszqWleAU78WNJETV-nKLs60ly1o6XGnYdO7UZiYQ4I7p-Wj3pBWd89hC4aMtTpbK-UmWiN3SVY3Dgshs6qqn8ODATDamDTOIe_wvzYm-kjF0kfPxLipu4Xu0JgLGz6496tZzwMqR2gpz-vfolbDZeJTU32d_9yY1FyPzW2RncOH6EE1S8EDh65HqKPNY3RvWB8O-ASdAsqwRxn2KMPvPcawx9gurhGGPcLwPMceYRgQhiuE4QZhuI2wp-jo65fD4SioTu8IFIvEMshiaAKhtIoiRWRO8gi4qAL-mGU0jYC5ZpykicxVyDPN4RfmJFEk0pzBkMsIe4a2zdzoFwjnGVc8tn1HkvQVEUJSTiVjTKVxzkLVRbt1m45VJW1vT1iZjm-ar4ve-rInTtBlY6md2jTj6ttejMtd4kD3Ke2iNz4bGt762KTR8xWU4UDJI9bn7C9lgBNbBzfnXfTcWds_CiQSK7HXRfEaDnwBKwe_nmOKSSkLL-zsKxEvb_WCr9D95qvcQdvLs5V-je6q82WxOOuhrfg46ZXrU70S5n8AZc3X6Q
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Aquilegia+pubiflora+%28Himalayan+columbine%29+mediated+synthesis+of+nanoceria+for+diverse+biomedical+applications&rft.jtitle=RSC+advances&rft.au=Jan%2C+Hasnain&rft.au=Khan%2C+Muhammad+Aslam&rft.au=Usman%2C+Hazrat&rft.au=Shah%2C+Muzamil&rft.date=2020-05-20&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=10&rft.issue=33&rft.spage=19219&rft.epage=19231&rft_id=info:doi/10.1039%2FD0RA01971B&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0RA01971B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon