A novel hybrid CNN–SVM classifier for recognizing handwritten digits

This paper presents a hybrid model of integrating the synergy of two superior classifiers: Convolutional Neural Network (CNN) and Support Vector Machine (SVM), which have proven results in recognizing different types of patterns. In this model, CNN works as a trainable feature extractor and SVM perf...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 45; číslo 4; s. 1318 - 1325
Hlavní autoři: Niu, Xiao-Xiao, Suen, Ching Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.04.2012
Elsevier
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a hybrid model of integrating the synergy of two superior classifiers: Convolutional Neural Network (CNN) and Support Vector Machine (SVM), which have proven results in recognizing different types of patterns. In this model, CNN works as a trainable feature extractor and SVM performs as a recognizer. This hybrid model automatically extracts features from the raw images and generates the predictions. Experiments have been conducted on the well-known MNIST digit database. Comparisons with other studies on the same database indicate that this fusion has achieved better results: a recognition rate of 99.81% without rejection, and a recognition rate of 94.40% with 5.60% rejection. These performances have been analyzed with reference to those by human subjects. ► We explored a new hybrid of Convolutional Neural Network and Support Vector Machine. ► Experiments were conducted on the MNIST database. ► The hybrid model has achieved better recognition and reliability performances. ► The best recognition rate was 99.81% without rejection. ► A reliability rate of 100% with 5.60% rejection was obtained.
AbstractList This paper presents a hybrid model of integrating the synergy of two superior classifiers: Convolutional Neural Network (CNN) and Support Vector Machine (SVM), which have proven results in recognizing different types of patterns. In this model, CNN works as a trainable feature extractor and SVM performs as a recognizer. This hybrid model automatically extracts features from the raw images and generates the predictions. Experiments have been conducted on the well-known MNIST digit database. Comparisons with other studies on the same database indicate that this fusion has achieved better results: a recognition rate of 99.81% without rejection, and a recognition rate of 94.40% with 5.60% rejection. These performances have been analyzed with reference to those by human subjects.
This paper presents a hybrid model of integrating the synergy of two superior classifiers: Convolutional Neural Network (CNN) and Support Vector Machine (SVM), which have proven results in recognizing different types of patterns. In this model, CNN works as a trainable feature extractor and SVM performs as a recognizer. This hybrid model automatically extracts features from the raw images and generates the predictions. Experiments have been conducted on the well-known MNIST digit database. Comparisons with other studies on the same database indicate that this fusion has achieved better results: a recognition rate of 99.81% without rejection, and a recognition rate of 94.40% with 5.60% rejection. These performances have been analyzed with reference to those by human subjects. ► We explored a new hybrid of Convolutional Neural Network and Support Vector Machine. ► Experiments were conducted on the MNIST database. ► The hybrid model has achieved better recognition and reliability performances. ► The best recognition rate was 99.81% without rejection. ► A reliability rate of 100% with 5.60% rejection was obtained.
Author Suen, Ching Y.
Niu, Xiao-Xiao
Author_xml – sequence: 1
  givenname: Xiao-Xiao
  surname: Niu
  fullname: Niu, Xiao-Xiao
  email: archernxx@hotmail.com
– sequence: 2
  givenname: Ching Y.
  surname: Suen
  fullname: Suen, Ching Y.
  email: suen@encs.concordia.ca
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25604047$$DView record in Pascal Francis
BookMark eNqFkLtOHDEUQC1EpCwkf5BiGqQ0M_gxY--kiIRWPCIRUuTRWtee68WrwV5sA4KKf-AP8yWZ1SIKilDd4p5zr3T2yG6IAQn5xGjDKJOHq2YNxcZlwyljDe0bytkOmbG5EnXHWr5LZpQKVgtOxXuyl_OKUqamxYycHFUh3uJYXd6b5IdqcXHx9_Hp55_vlR0hZ-88psrFVCWcHgT_4MOyuoQw3CVfCoZq8Etf8gfyzsGY8ePz3Ce_T45_Lc7q8x-n3xZH57UVsi81IHdzJ93AFTgplFNGWSOgHSTiXDBlemrAtAqkA9khqM5IIbHnpjPKgNgnn7d31yle32Au-spni-MIAeNN1kwqxlvRSTWhB88oZAujSxCsz3qd_BWke807SVvabrh2y9kUc07oXhBG9SavXultXr3Jq2mvp7yT9uWVZn2B4mMoCfz4lvx1K-PU6nZKrLP1GCwOfupc9BD9_w_8A7oBm_M
CODEN PTNRA8
CitedBy_id crossref_primary_10_3233_JIFS_221389
crossref_primary_10_1016_j_neunet_2014_08_001
crossref_primary_10_1016_j_petsci_2023_11_010
crossref_primary_10_1007_s13369_021_05471_4
crossref_primary_10_3390_a15040129
crossref_primary_10_1109_TIM_2022_3192258
crossref_primary_10_1515_bmt_2020_0038
crossref_primary_10_3390_bioengineering10030294
crossref_primary_10_1016_j_inffus_2021_09_012
crossref_primary_10_1016_j_patrec_2017_05_019
crossref_primary_10_1016_j_biosystemseng_2020_07_019
crossref_primary_10_1016_j_neucom_2022_06_086
crossref_primary_10_1016_j_imavis_2024_104987
crossref_primary_10_1142_S021812662550402X
crossref_primary_10_3390_math11041050
crossref_primary_10_1016_j_nucengdes_2021_111328
crossref_primary_10_1007_s41066_019_00158_6
crossref_primary_10_3233_IDT_230382
crossref_primary_10_1016_j_nanoen_2021_106654
crossref_primary_10_1007_s00500_020_05455_w
crossref_primary_10_1109_JBHI_2021_3073632
crossref_primary_10_1016_j_bspc_2018_07_015
crossref_primary_10_1007_s10846_016_0440_2
crossref_primary_10_1007_s11760_016_1048_5
crossref_primary_10_1016_j_compbiomed_2025_110693
crossref_primary_10_1016_j_ultras_2022_106854
crossref_primary_10_3233_JIFS_233910
crossref_primary_10_3390_s21186273
crossref_primary_10_1007_s00521_014_1758_y
crossref_primary_10_1007_s00521_020_04735_8
crossref_primary_10_1007_s11045_016_0466_4
crossref_primary_10_3390_ani12182425
crossref_primary_10_1016_j_istruc_2025_109959
crossref_primary_10_1109_ACCESS_2021_3056558
crossref_primary_10_1016_j_irbm_2020_07_002
crossref_primary_10_3390_s19194218
crossref_primary_10_1016_j_neucom_2018_02_100
crossref_primary_10_3390_app121910155
crossref_primary_10_1080_13682199_2023_2215031
crossref_primary_10_1038_s41598_022_17362_1
crossref_primary_10_1007_s12046_020_01484_1
crossref_primary_10_3390_agriculture13020352
crossref_primary_10_3390_sym9050075
crossref_primary_10_1007_s13042_019_00966_x
crossref_primary_10_1016_j_patrec_2017_01_020
crossref_primary_10_3390_su15021502
crossref_primary_10_1016_j_jhydrol_2019_124482
crossref_primary_10_1016_j_patcog_2024_110637
crossref_primary_10_1007_s40846_016_0182_4
crossref_primary_10_1016_j_asoc_2022_109197
crossref_primary_10_1080_24751839_2019_1660845
crossref_primary_10_1109_ACCESS_2019_2938829
crossref_primary_10_1016_j_neunet_2025_107125
crossref_primary_10_1002_ett_3823
crossref_primary_10_1016_j_jelekin_2018_07_005
crossref_primary_10_1016_j_patcog_2017_08_004
crossref_primary_10_1007_s13748_022_00290_6
crossref_primary_10_1016_j_vibspec_2023_103647
crossref_primary_10_1088_1757_899X_928_3_032036
crossref_primary_10_1109_TETCI_2023_3297841
crossref_primary_10_1016_j_eswa_2021_114708
crossref_primary_10_1007_s00521_024_09657_3
crossref_primary_10_1007_s11042_023_16923_4
crossref_primary_10_1007_s11760_021_01997_0
crossref_primary_10_1016_j_engappai_2023_106237
crossref_primary_10_1007_s12293_015_0152_3
crossref_primary_10_1007_s11063_025_11783_5
crossref_primary_10_1016_j_procs_2015_12_018
crossref_primary_10_1109_ACCESS_2019_2897060
crossref_primary_10_1007_s11277_021_08903_4
crossref_primary_10_1007_s40595_014_0038_1
crossref_primary_10_1109_ACCESS_2017_2705798
crossref_primary_10_1007_s42979_020_00168_1
crossref_primary_10_1155_2023_2753941
crossref_primary_10_3390_app8122649
crossref_primary_10_1016_j_patcog_2013_04_016
crossref_primary_10_1109_ACCESS_2018_2853620
crossref_primary_10_1016_j_patcog_2013_04_018
crossref_primary_10_1016_j_neunet_2013_07_012
crossref_primary_10_1002_adma_202413430
crossref_primary_10_1016_j_bspc_2021_102814
crossref_primary_10_1155_2016_5642856
crossref_primary_10_1007_s13369_023_08170_4
crossref_primary_10_1016_j_procs_2020_03_309
crossref_primary_10_1109_ACCESS_2022_3204821
crossref_primary_10_1016_j_neucom_2019_07_098
crossref_primary_10_1109_ACCESS_2021_3087647
crossref_primary_10_1007_s00521_019_04163_3
crossref_primary_10_1155_2022_2034685
crossref_primary_10_3389_fninf_2022_973010
crossref_primary_10_1080_21642583_2021_1888819
crossref_primary_10_1109_TCBB_2022_3216661
crossref_primary_10_1080_10447318_2023_2175494
crossref_primary_10_1007_s10845_022_02053_5
crossref_primary_10_1016_j_imu_2024_101504
crossref_primary_10_1007_s10032_024_00501_x
crossref_primary_10_1016_j_infrared_2019_103075
crossref_primary_10_38124_ijisrt_24may601
crossref_primary_10_1109_TBME_2018_2845706
crossref_primary_10_1007_s12524_022_01506_x
crossref_primary_10_7717_peerj_cs_2960
crossref_primary_10_1007_s10618_020_00722_8
crossref_primary_10_1089_big_2020_0190
crossref_primary_10_1038_s41598_019_38966_0
crossref_primary_10_1002_asna_20240057
crossref_primary_10_1016_j_jvcir_2018_07_011
crossref_primary_10_1007_s11042_019_08355_w
crossref_primary_10_1109_ACCESS_2020_3039531
crossref_primary_10_1016_j_asoc_2019_105959
crossref_primary_10_1007_s11069_022_05326_7
crossref_primary_10_3390_sym11091151
crossref_primary_10_1109_TFUZZ_2014_2370677
crossref_primary_10_1155_2023_8134627
crossref_primary_10_1007_s12206_022_1103_9
crossref_primary_10_1016_j_knosys_2020_105922
crossref_primary_10_1016_j_knosys_2022_110079
crossref_primary_10_3390_sym16111413
crossref_primary_10_1088_1742_6596_2171_1_012049
crossref_primary_10_3390_jimaging5040044
crossref_primary_10_1080_09540091_2019_1609420
crossref_primary_10_3390_app10165430
crossref_primary_10_1016_j_ecoinf_2021_101411
crossref_primary_10_1007_s13369_024_08710_6
crossref_primary_10_1016_j_patrec_2018_04_008
crossref_primary_10_1016_j_patcog_2016_10_018
crossref_primary_10_1007_s10044_014_0433_3
crossref_primary_10_3390_rs11202370
crossref_primary_10_1109_ACCESS_2018_2864553
crossref_primary_10_1109_TPDS_2021_3127712
crossref_primary_10_1016_j_asoc_2016_12_024
crossref_primary_10_3390_rs14020355
crossref_primary_10_1007_s11709_022_0819_z
crossref_primary_10_1007_s10845_023_02109_0
crossref_primary_10_3389_fpls_2022_1006292
crossref_primary_10_32604_cmc_2023_038556
crossref_primary_10_1007_s00500_016_2199_6
crossref_primary_10_1021_acs_energyfuels_4c05402
crossref_primary_10_1016_j_procs_2015_07_529
crossref_primary_10_1007_s11220_019_0231_5
crossref_primary_10_1016_j_compbiomed_2021_104803
crossref_primary_10_1016_j_neucom_2015_08_013
crossref_primary_10_3390_s20123344
crossref_primary_10_1007_s00339_021_04512_x
crossref_primary_10_1002_ima_22826
crossref_primary_10_1155_2019_6134610
crossref_primary_10_3389_fpls_2023_1234067
crossref_primary_10_1016_j_jocs_2017_11_011
crossref_primary_10_1007_s10845_020_01540_x
crossref_primary_10_1016_j_sna_2022_113773
crossref_primary_10_1109_ACCESS_2020_3040298
crossref_primary_10_1016_j_neucom_2020_06_110
crossref_primary_10_1111_exsy_12842
crossref_primary_10_1109_ACCESS_2018_2878553
crossref_primary_10_3390_sym12101742
crossref_primary_10_1016_j_patcog_2016_12_005
crossref_primary_10_1155_2013_867924
crossref_primary_10_1016_j_combustflame_2021_111501
crossref_primary_10_1016_j_neucom_2017_08_062
crossref_primary_10_1016_j_patrec_2013_11_014
crossref_primary_10_1109_TIE_2017_2764861
crossref_primary_10_1016_j_compmedimag_2020_101782
crossref_primary_10_3390_s21061999
crossref_primary_10_1016_j_asoc_2021_108084
crossref_primary_10_1049_iet_its_2017_0136
crossref_primary_10_1007_s11042_018_6781_z
crossref_primary_10_1007_s11042_020_09545_7
crossref_primary_10_38124_ijisrt_25jul782
crossref_primary_10_1016_j_ymssp_2024_111770
crossref_primary_10_1109_ACCESS_2020_3036912
crossref_primary_10_1109_ACCESS_2021_3079131
crossref_primary_10_1002_qre_3103
crossref_primary_10_1016_j_cosrev_2021_100374
crossref_primary_10_3233_IDA_173361
crossref_primary_10_3233_JIFS_230128
crossref_primary_10_3390_info9040097
crossref_primary_10_1515_bmt_2021_0170
crossref_primary_10_1007_s13369_017_2652_6
crossref_primary_10_1016_j_patrec_2016_01_016
crossref_primary_10_1016_j_engappai_2022_104978
crossref_primary_10_1109_ACCESS_2021_3131002
crossref_primary_10_1109_ACCESS_2022_3199358
crossref_primary_10_3390_app10175988
crossref_primary_10_3390_s20247013
crossref_primary_10_1007_s10462_019_09720_9
crossref_primary_10_1007_s11220_021_00363_1
crossref_primary_10_1186_s13638_017_0993_1
crossref_primary_10_3390_sym10120736
crossref_primary_10_3390_cancers15143608
crossref_primary_10_3390_ijgi10100687
crossref_primary_10_1016_j_aci_2015_05_001
crossref_primary_10_2196_41819
crossref_primary_10_3390_s19092056
crossref_primary_10_1016_j_eswa_2020_113784
crossref_primary_10_3390_s21020434
crossref_primary_10_1016_j_asoc_2015_08_038
crossref_primary_10_1007_s41870_021_00650_w
crossref_primary_10_1016_j_patrec_2019_07_009
crossref_primary_10_3390_electronics10040427
crossref_primary_10_2514_1_J060117
crossref_primary_10_3233_JIFS_152549
crossref_primary_10_3389_fbuil_2020_00136
crossref_primary_10_1007_s00521_023_08644_4
crossref_primary_10_1080_09540091_2023_2286186
crossref_primary_10_1016_j_inffus_2020_10_002
crossref_primary_10_1016_j_ijmedinf_2025_106083
crossref_primary_10_1088_1755_1315_252_2_022046
crossref_primary_10_1109_ACCESS_2020_3037107
crossref_primary_10_1063_5_0165621
crossref_primary_10_1016_j_asoc_2022_109113
crossref_primary_10_1016_j_patcog_2016_07_012
crossref_primary_10_1016_j_patcog_2017_10_013
crossref_primary_10_3390_app122312432
crossref_primary_10_1016_j_neunet_2018_02_010
crossref_primary_10_1007_s11063_025_11741_1
crossref_primary_10_1155_2019_7541814
crossref_primary_10_1007_s42250_025_01239_7
crossref_primary_10_1016_j_procir_2020_05_091
crossref_primary_10_3390_math10224366
crossref_primary_10_1007_s00500_016_2095_0
crossref_primary_10_1016_j_asoc_2019_105661
crossref_primary_10_3233_JIFS_212378
crossref_primary_10_1016_j_patcog_2014_12_015
crossref_primary_10_1016_j_patcog_2018_12_015
crossref_primary_10_1007_s11063_019_10062_4
crossref_primary_10_1049_cit2_12347
crossref_primary_10_1049_iet_bmt_2018_5081
crossref_primary_10_1002_ppj2_20065
crossref_primary_10_1016_j_patcog_2015_11_005
crossref_primary_10_1016_j_lwt_2024_116458
crossref_primary_10_1007_s00500_015_1757_7
crossref_primary_10_1016_j_neucom_2016_08_024
crossref_primary_10_1016_j_procir_2022_05_184
crossref_primary_10_3389_fmats_2024_1431179
crossref_primary_10_1109_ACCESS_2019_2913620
crossref_primary_10_1016_j_neucom_2017_02_081
crossref_primary_10_1016_j_patcog_2014_07_023
crossref_primary_10_1109_TIFS_2017_2766583
crossref_primary_10_3390_app12115493
crossref_primary_10_1007_s11220_020_00288_1
crossref_primary_10_1016_j_procs_2016_05_512
crossref_primary_10_1109_ACCESS_2017_2716191
crossref_primary_10_1007_s10032_021_00368_2
crossref_primary_10_1016_j_triboint_2019_05_029
crossref_primary_10_3390_electronics12051243
crossref_primary_10_3390_app15010111
crossref_primary_10_1155_2017_5169675
crossref_primary_10_1007_s12293_016_0191_4
crossref_primary_10_1016_j_infrared_2016_08_009
crossref_primary_10_1016_j_petrol_2020_108105
crossref_primary_10_1016_j_asoc_2021_107115
crossref_primary_10_1016_j_neucom_2018_10_090
crossref_primary_10_1017_jfm_2023_573
crossref_primary_10_1007_s41095_020_0181_9
crossref_primary_10_1007_s00521_021_06693_1
crossref_primary_10_1109_ACCESS_2019_2946313
crossref_primary_10_1016_j_ijepes_2020_106583
crossref_primary_10_1109_ACCESS_2019_2960161
crossref_primary_10_1007_s11760_020_01807_z
crossref_primary_10_3390_diagnostics10050329
crossref_primary_10_3390_electronics12122663
crossref_primary_10_1038_s41598_020_60277_y
crossref_primary_10_1007_s42452_019_1579_9
crossref_primary_10_1016_j_infrared_2016_03_006
crossref_primary_10_1108_IJICC_04_2019_0031
crossref_primary_10_1145_3379449
crossref_primary_10_3390_info8040142
crossref_primary_10_1007_s11042_022_11978_1
crossref_primary_10_1007_s12559_021_09896_9
crossref_primary_10_3390_app12083715
crossref_primary_10_1002_ett_3612
crossref_primary_10_1038_s41598_024_74025_z
crossref_primary_10_1007_s11042_023_14496_w
crossref_primary_10_1016_j_patcog_2017_10_025
crossref_primary_10_1016_j_cogsys_2018_06_008
crossref_primary_10_3233_JIFS_169862
crossref_primary_10_3390_app122111301
crossref_primary_10_1007_s10015_019_00545_x
crossref_primary_10_1109_ACCESS_2025_3559794
crossref_primary_10_17706_IJCEE_2019_11_1_41_52
crossref_primary_10_1109_TIM_2018_2890329
crossref_primary_10_3390_electronics12030645
crossref_primary_10_1016_j_patcog_2020_107420
crossref_primary_10_1016_j_newast_2015_11_001
crossref_primary_10_32604_cmc_2021_018758
crossref_primary_10_1007_s11042_023_15402_0
crossref_primary_10_1016_j_robot_2021_103829
crossref_primary_10_1007_s00521_020_05015_1
crossref_primary_10_1016_j_infrared_2018_07_013
crossref_primary_10_1007_s11063_023_11250_z
crossref_primary_10_1016_j_eswa_2023_121214
crossref_primary_10_1080_08839514_2020_1723876
crossref_primary_10_1049_iet_ipr_2017_0745
crossref_primary_10_3390_electronics14010107
crossref_primary_10_1038_s41598_025_07676_1
crossref_primary_10_1364_AO_57_000322
crossref_primary_10_1016_j_neucom_2019_12_083
crossref_primary_10_1109_ACCESS_2024_3397465
crossref_primary_10_3389_fgene_2019_01303
crossref_primary_10_1016_j_aquaculture_2021_737128
crossref_primary_10_1049_iet_ipr_2017_0184
crossref_primary_10_1155_2016_3049632
crossref_primary_10_1007_s42979_021_00791_6
crossref_primary_10_1111_mice_12546
crossref_primary_10_1016_j_neucom_2019_10_013
crossref_primary_10_1364_AO_438287
crossref_primary_10_1109_TAES_2016_160061
crossref_primary_10_1016_j_ascom_2018_07_002
crossref_primary_10_1016_j_image_2018_08_003
crossref_primary_10_1049_joe_2019_0439
crossref_primary_10_1007_s10846_022_01652_x
crossref_primary_10_1109_TASLP_2016_2632307
crossref_primary_10_1177_1369433220975574
crossref_primary_10_1177_0037549717709932
crossref_primary_10_1080_17455030_2022_2070683
crossref_primary_10_1155_2017_3792805
crossref_primary_10_1007_s10462_017_9555_5
crossref_primary_10_1007_s11947_017_2050_9
crossref_primary_10_1145_2629509
Cites_doi 10.1162/NECO_a_00052
10.1109/5.726791
10.1016/j.patcog.2006.10.011
10.1109/IVS.2005.1505106
10.1109/ICDAR.2009.80
10.1109/ICDAR.2003.1227801
10.1109/ICDAR.2005.200
10.1016/j.patrec.2004.10.019
10.1109/ICPR.2010.493
10.1109/72.991427
10.1109/TPAMI.2007.1153
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patcog.2011.09.021
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 1325
ExternalDocumentID 25604047
10_1016_j_patcog_2011_09_021
S0031320311004006
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c369t-ae2f8f6fd27af637f7b7cb3a4d6ee8317b90bab47a6fa65ea75b636e92b5b7ba3
ISICitedReferencesCount 471
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300459000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Thu Oct 02 11:15:10 EDT 2025
Mon Jul 21 09:15:01 EDT 2025
Tue Nov 18 22:33:35 EST 2025
Sat Nov 29 07:27:03 EST 2025
Fri Feb 23 02:33:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Convolutional Neural Network
Hybrid model
Support Vector Machine
Handwritten digit recognition
Performance evaluation
Automatic classification
Cellular neural nets
Support vector machine
Pattern recognition
Neural network
Signal classification
Database
Handwritten character recognition
Manuscript character
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-ae2f8f6fd27af637f7b7cb3a4d6ee8317b90bab47a6fa65ea75b636e92b5b7ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671243567
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1671243567
pascalfrancis_primary_25604047
crossref_primary_10_1016_j_patcog_2011_09_021
crossref_citationtrail_10_1016_j_patcog_2011_09_021
elsevier_sciencedirect_doi_10_1016_j_patcog_2011_09_021
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Pattern recognition
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hastie, Tibshirani (bib9) 1988; 26
P.Y. Simard, D. Steinkraus, J.C. Platt, Best practice for convolutional neural networks applied to visual document analysis, in: Proceedings of the International Conference on Document Analysis and Recognition, Edinburgh, Scotland, 2, 2003, pp. 958–962.
D.C. Ciresan, U. Meier, L.M. Gambardella, J. Schmidhuber, Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition, CoRR, abs/1003.0358, 2010.
Vapnik (bib5) 1995
K. Mori, M. Matsugu, T. Suzuki, Face recognition using SVM fed with intermediate output of CNN for face detection, in: Proceedings of the IAPR Conference on Machine Vision Applications, Tsukuba Science City, Japan, May 2005, pp. 410–413.
H. Cecotti, A. Belaid, Rejection strategy for convolutional neural network for adaptive topology applied to handwritten digits recognition, in: Proceedings of International Conference on Document Analysis and Recognition, Seoul, Korea, 2005, pp. 765–769.
M. Szarvas, A. Yoshizawa, M. Yamamoto, J. Ogata, Pedestrian detection with convolutional neural networks, in: Proceedings of the IEEE on Intelligent Vehicles Symposium, June 2005, pp. 224–229.
Wu, Lin, Weng (bib8) 2004; 5
.
Hsu, Lin (bib6) 2002; 13
LeCun, Bottou, Bengio, Haffner (bib10) 1998; 86
W. Pan, T.D. Bui, C.Y. Suen, Isolated handwritten Farsi numerals recognition using sparse and over-complete representations, in: Proceedings of the International Conference on Document Analysis and Recognition, Barcelona, Spain, July 2009, pp. 586–590.
Ranzato, Poultney, Chopra, LeCun (bib12) 2006
J.X. Dong, HeroSvm 2.1
Keysers, Deselaers, Gollan, Ney (bib17) 2007; 29
Lauer, Suen, Bloch (bib4) June 2007; 40
2001.
C.C. Chang, C.J. Lin, LIBSVM: A Library for Support Vector Machines, Software Available at
Suen, Tan (bib20) 2005; 26
Simard, Cun, Denker (bib15) 1993; 5
Y. Mizukami, K. Yamaguchi, J. Warrell, P. Li, S. Prince, CUDA implementation of deformable pattern recognition and its application to MNIST handwritten digit database, in: Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010, pp. 2000–2004.
The MNIST Database of Handwritten Digits
Keysers (10.1016/j.patcog.2011.09.021_bib17) 2007; 29
Hsu (10.1016/j.patcog.2011.09.021_bib6) 2002; 13
Ranzato (10.1016/j.patcog.2011.09.021_bib12) 2006
Wu (10.1016/j.patcog.2011.09.021_bib8) 2004; 5
Vapnik (10.1016/j.patcog.2011.09.021_bib5) 1995
Hastie (10.1016/j.patcog.2011.09.021_bib9) 1988; 26
Lauer (10.1016/j.patcog.2011.09.021_bib4) 2007; 40
LeCun (10.1016/j.patcog.2011.09.021_bib10) 1998; 86
10.1016/j.patcog.2011.09.021_bib19
10.1016/j.patcog.2011.09.021_bib3
10.1016/j.patcog.2011.09.021_bib18
10.1016/j.patcog.2011.09.021_bib2
10.1016/j.patcog.2011.09.021_bib1
Simard (10.1016/j.patcog.2011.09.021_bib15) 1993; 5
10.1016/j.patcog.2011.09.021_bib16
Suen (10.1016/j.patcog.2011.09.021_bib20) 2005; 26
10.1016/j.patcog.2011.09.021_bib7
10.1016/j.patcog.2011.09.021_bib14
10.1016/j.patcog.2011.09.021_bib13
10.1016/j.patcog.2011.09.021_bib11
References_xml – start-page: 1134
  year: 2006
  end-page: 1144
  ident: bib12
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Advances in Neural Information Processing Systems
– reference: The MNIST Database of Handwritten Digits,
– volume: 26
  start-page: 369
  year: 2005
  end-page: 379
  ident: bib20
  article-title: Analysis of errors on handwritten digits made by a multitude of classifiers
  publication-title: Pattern Recognition Letters
– reference: M. Szarvas, A. Yoshizawa, M. Yamamoto, J. Ogata, Pedestrian detection with convolutional neural networks, in: Proceedings of the IEEE on Intelligent Vehicles Symposium, June 2005, pp. 224–229.
– volume: 40
  start-page: 1816
  year: June 2007
  end-page: 1824
  ident: bib4
  article-title: A trainable feature extractor for handwritten digit recognition
  publication-title: Pattern Recognition
– reference: W. Pan, T.D. Bui, C.Y. Suen, Isolated handwritten Farsi numerals recognition using sparse and over-complete representations, in: Proceedings of the International Conference on Document Analysis and Recognition, Barcelona, Spain, July 2009, pp. 586–590.
– reference: P.Y. Simard, D. Steinkraus, J.C. Platt, Best practice for convolutional neural networks applied to visual document analysis, in: Proceedings of the International Conference on Document Analysis and Recognition, Edinburgh, Scotland, 2, 2003, pp. 958–962.
– reference: H. Cecotti, A. Belaid, Rejection strategy for convolutional neural network for adaptive topology applied to handwritten digits recognition, in: Proceedings of International Conference on Document Analysis and Recognition, Seoul, Korea, 2005, pp. 765–769.
– volume: 26
  start-page: 451
  year: 1988
  end-page: 471
  ident: bib9
  article-title: Classification by pairwise coupling
  publication-title: The Annals of Statistics
– reference: J.X. Dong, HeroSvm 2.1,
– reference: D.C. Ciresan, U. Meier, L.M. Gambardella, J. Schmidhuber, Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition, CoRR, abs/1003.0358, 2010.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib10
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– volume: 5
  start-page: 50
  year: 1993
  end-page: 58
  ident: bib15
  article-title: Efficient pattern recognition using a new transformation distance
  publication-title: Advances in Neural Information Processing Systems
– reference: , 2001.
– volume: 29
  start-page: 1422
  year: 2007
  end-page: 1435
  ident: bib17
  article-title: Deformation models for image recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 1995
  ident: bib5
  article-title: The Nature of Statistical Learning Theory
– volume: 5
  start-page: 975
  year: 2004
  end-page: 1005
  ident: bib8
  article-title: Probability estimates for multi-class classification by pairwise coupling
  publication-title: Journal of Machine Learning Research
– reference: Y. Mizukami, K. Yamaguchi, J. Warrell, P. Li, S. Prince, CUDA implementation of deformable pattern recognition and its application to MNIST handwritten digit database, in: Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010, pp. 2000–2004.
– reference: K. Mori, M. Matsugu, T. Suzuki, Face recognition using SVM fed with intermediate output of CNN for face detection, in: Proceedings of the IAPR Conference on Machine Vision Applications, Tsukuba Science City, Japan, May 2005, pp. 410–413.
– volume: 13
  start-page: 415
  year: 2002
  end-page: 425
  ident: bib6
  article-title: A comparison of methods for multi-class support vector machines
  publication-title: IEEE Transactions on Neural Networks
– reference: .
– reference: C.C. Chang, C.J. Lin, LIBSVM: A Library for Support Vector Machines, Software Available at
– ident: 10.1016/j.patcog.2011.09.021_bib19
– volume: 5
  start-page: 975
  year: 2004
  ident: 10.1016/j.patcog.2011.09.021_bib8
  article-title: Probability estimates for multi-class classification by pairwise coupling
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.patcog.2011.09.021_bib1
  doi: 10.1162/NECO_a_00052
– volume: 26
  start-page: 451
  issue: 1
  year: 1988
  ident: 10.1016/j.patcog.2011.09.021_bib9
  article-title: Classification by pairwise coupling
  publication-title: The Annals of Statistics
– ident: 10.1016/j.patcog.2011.09.021_bib14
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.patcog.2011.09.021_bib10
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– ident: 10.1016/j.patcog.2011.09.021_bib3
– volume: 40
  start-page: 1816
  issue: 6
  year: 2007
  ident: 10.1016/j.patcog.2011.09.021_bib4
  article-title: A trainable feature extractor for handwritten digit recognition
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.10.011
– ident: 10.1016/j.patcog.2011.09.021_bib7
– volume: 5
  start-page: 50
  year: 1993
  ident: 10.1016/j.patcog.2011.09.021_bib15
  article-title: Efficient pattern recognition using a new transformation distance
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.patcog.2011.09.021_bib2
  doi: 10.1109/IVS.2005.1505106
– ident: 10.1016/j.patcog.2011.09.021_bib11
  doi: 10.1109/ICDAR.2009.80
– ident: 10.1016/j.patcog.2011.09.021_bib13
  doi: 10.1109/ICDAR.2003.1227801
– ident: 10.1016/j.patcog.2011.09.021_bib18
  doi: 10.1109/ICDAR.2005.200
– year: 1995
  ident: 10.1016/j.patcog.2011.09.021_bib5
– start-page: 1134
  year: 2006
  ident: 10.1016/j.patcog.2011.09.021_bib12
  article-title: Efficient learning of sparse representations with an energy-based model
– volume: 26
  start-page: 369
  year: 2005
  ident: 10.1016/j.patcog.2011.09.021_bib20
  article-title: Analysis of errors on handwritten digits made by a multitude of classifiers
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2004.10.019
– ident: 10.1016/j.patcog.2011.09.021_bib16
  doi: 10.1109/ICPR.2010.493
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  ident: 10.1016/j.patcog.2011.09.021_bib6
  article-title: A comparison of methods for multi-class support vector machines
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.991427
– volume: 29
  start-page: 1422
  issue: 8
  year: 2007
  ident: 10.1016/j.patcog.2011.09.021_bib17
  article-title: Deformation models for image recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1153
SSID ssj0017142
Score 2.5805757
Snippet This paper presents a hybrid model of integrating the synergy of two superior classifiers: Convolutional Neural Network (CNN) and Support Vector Machine (SVM),...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1318
SubjectTerms Applied sciences
Artificial intelligence
Classifiers
Computer science; control theory; systems
Connectionism. Neural networks
Convolutional Neural Network
Digits
Exact sciences and technology
Handwritten digit recognition
Hybrid model
Information, signal and communications theory
Mathematical models
Pattern recognition
Recognition
Rejection
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Support Vector Machine
Support vector machines
Telecommunications and information theory
Title A novel hybrid CNN–SVM classifier for recognizing handwritten digits
URI https://dx.doi.org/10.1016/j.patcog.2011.09.021
https://www.proquest.com/docview/1671243567
Volume 45
WOSCitedRecordID wos000300459000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg44CE-EaUj8lI3KJMaZzY8bEaRQxBtcOKyimyHXtkmpKq6cbgr-c5dtKMChUOXKzWShzF7-fnX57fB0JvizjTlJM0pCnPwkSNVcglYyETwEZiqRLlkiR9YrNZtljwE1-Ms2nLCbCqyq6v-fK_ihr6QNg2dPYfxN0PCh3wG4QOLYgd2r8S_CSo6it9EXz7YYOxgqMZ6MwvnwNlaXJpbHCJ9Sz0jkM_raXAGs-_r8o10OegKM9Kl9ypo6wnbQbOKuhdjTYH97PjuRXRohR1aJveXDOfztxZvh3-69CyYF00kqFloQt5GapPMg5JHJGh-nTZID1MkoEuHBOvWbX_6yKct3S2Mx-cHy5h76nPfFZVfhi5yOmbKbJ_27p6h0JL3JIoYbfRfsxSDuptf3I8XXzsD5TYOHGJ4_0bdFGUravf9pP_xFLuLUUDa8e4oidb-3dLSk4fovv-awJPHAoeoVu6eowe-C8L7PV2A11d8Y6u7wl6N8EtTrDDCfY4wRucYMAJHuAED3CCHU6eovn76enRh9CX1AgVoXwdCh2bzFBTxEwYSphhkilJRFJQrTPgkpJHUsiECWoETbVgqaSEali2qWRSkGdor6or_RxhToWKjKZKGJNopbkkRSxooeB6VUTpCJFuCnPl883bsicXeedYeJ67ic_txOcRz2HiRyjs71q6fCs7rmeddHLPGR0XzAFeO-48uCHM_nEdlkboTSfdHHSuPUgTla4vm3xMGdBiklL2YtcgL9HdzdJ6hfbWq0v9Gt1RV-uyWR14lP4CaZuioA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+CNN-SVM+classifier+for+recognizing+handwritten+digits&rft.jtitle=Pattern+recognition&rft.au=NIU%2C+Xiao-Xiao&rft.au=SUEN%2C+Ching+Y&rft.date=2012-04-01&rft.pub=Elsevier&rft.issn=0031-3203&rft.volume=45&rft.issue=4&rft.spage=1318&rft.epage=1325&rft_id=info:doi/10.1016%2Fj.patcog.2011.09.021&rft.externalDBID=n%2Fa&rft.externalDocID=25604047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon