Use of reduced forms in the disturbance decoupling problem

Specific algorithms, such as those involving the supremal of the invariant subspaces contained in a suitable subspace, are known to be able to test whether a Disturbance Decoupling Problem (DDP) is solvable. Here, by reducing the system to its Molinari form, we obtain an alternative description of t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 430; číslo 5; s. 1574 - 1589
Hlavní autoři: Compta, Albert, Ferrer, Josep, Peña, Marta
Médium: Journal Article Konferenční příspěvek Publikace
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.03.2009
Elsevier
Témata:
ISSN:0024-3795
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Specific algorithms, such as those involving the supremal of the invariant subspaces contained in a suitable subspace, are known to be able to test whether a Disturbance Decoupling Problem (DDP) is solvable. Here, by reducing the system to its Molinari form, we obtain an alternative description of this supremal object and compute its dimension. Hence we have a general result for solving the decoupling provided that a Molinari basis is known. In particular, a necessary numerical condition for it is derived. The same technique is applied to the DDPS, that is, when stability of the decoupled closed loop system is required.
ISSN:0024-3795
DOI:10.1016/j.laa.2008.04.033