Use of reduced forms in the disturbance decoupling problem
Specific algorithms, such as those involving the supremal of the invariant subspaces contained in a suitable subspace, are known to be able to test whether a Disturbance Decoupling Problem (DDP) is solvable. Here, by reducing the system to its Molinari form, we obtain an alternative description of t...
Uloženo v:
| Vydáno v: | Linear algebra and its applications Ročník 430; číslo 5; s. 1574 - 1589 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article Konferenční příspěvek Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
01.03.2009
Elsevier |
| Témata: | |
| ISSN: | 0024-3795 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Specific algorithms, such as those involving the supremal of the invariant subspaces contained in a suitable subspace, are known to be able to test whether a Disturbance Decoupling Problem (DDP) is solvable. Here, by reducing the system to its Molinari form, we obtain an alternative description of this supremal object and compute its dimension. Hence we have a general result for solving the decoupling provided that a Molinari basis is known. In particular, a necessary numerical condition for it is derived. The same technique is applied to the DDPS, that is, when stability of the decoupled closed loop system is required. |
|---|---|
| ISSN: | 0024-3795 |
| DOI: | 10.1016/j.laa.2008.04.033 |