Multivariate online kernel density estimation with Gaussian kernels
We propose a novel approach to online estimation of probability density functions, which is based on kernel density estimation (KDE). The method maintains and updates a non-parametric model of the observed data, from which the KDE can be calculated. We propose an online bandwidth estimation approach...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition Jg. 44; H. 10; S. 2630 - 2642 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier Ltd
01.10.2011
Elsevier |
| Schlagworte: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We propose a novel approach to online estimation of probability density functions, which is based on kernel density estimation (KDE). The method maintains and updates a non-parametric model of the observed data, from which the KDE can be calculated. We propose an online bandwidth estimation approach and a compression/revitalization scheme which maintains the KDE's complexity low. We compare the proposed online KDE to the state-of-the-art approaches on examples of estimating stationary and non-stationary distributions, and on examples of classification. The results show that the online KDE outperforms or achieves a comparable performance to the state-of-the-art and produces models with a significantly lower complexity while allowing online adaptation.
[Display omitted]
► We propose a solution for online estimation of probability density functions. ► We extend the batch kernel density estimators (KDE) to online KDEs (oKDE). ► oKDE's complexity scales sublinearly with the number of samples. ► oKDE outperforms batch KDEs in non-stationary distribution estimation. ► oKDE achieves comparable classification performance to a batch SVM. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0031-3203 1873-5142 |
| DOI: | 10.1016/j.patcog.2011.03.019 |