Multivariate online kernel density estimation with Gaussian kernels

We propose a novel approach to online estimation of probability density functions, which is based on kernel density estimation (KDE). The method maintains and updates a non-parametric model of the observed data, from which the KDE can be calculated. We propose an online bandwidth estimation approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition Jg. 44; H. 10; S. 2630 - 2642
Hauptverfasser: Kristan, Matej, Leonardis, Aleš, Skočaj, Danijel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.10.2011
Elsevier
Schlagworte:
ISSN:0031-3203, 1873-5142
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel approach to online estimation of probability density functions, which is based on kernel density estimation (KDE). The method maintains and updates a non-parametric model of the observed data, from which the KDE can be calculated. We propose an online bandwidth estimation approach and a compression/revitalization scheme which maintains the KDE's complexity low. We compare the proposed online KDE to the state-of-the-art approaches on examples of estimating stationary and non-stationary distributions, and on examples of classification. The results show that the online KDE outperforms or achieves a comparable performance to the state-of-the-art and produces models with a significantly lower complexity while allowing online adaptation. [Display omitted] ► We propose a solution for online estimation of probability density functions. ► We extend the batch kernel density estimators (KDE) to online KDEs (oKDE). ► oKDE's complexity scales sublinearly with the number of samples. ► oKDE outperforms batch KDEs in non-stationary distribution estimation. ► oKDE achieves comparable classification performance to a batch SVM.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-3203
1873-5142
DOI:10.1016/j.patcog.2011.03.019