Novel metrics and LSH algorithms for unsupervised, real-time anomaly detection in multi-aspect data streams
Given a vast online stream of transactions in e-markets, how can we detect fraudulent traders and suspicious behaviors in an unsupervised manner? Can we detect them in constant time and memory? Fraud detection in e-markets is increasingly challenging due to the scale and complexity of multi-aspect d...
Gespeichert in:
| Veröffentlicht in: | Engineering science and technology, an international journal Jg. 69; S. 102119 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.09.2025
Elsevier |
| Schlagworte: | |
| ISSN: | 2215-0986, 2215-0986 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!