Novel metrics and LSH algorithms for unsupervised, real-time anomaly detection in multi-aspect data streams

Given a vast online stream of transactions in e-markets, how can we detect fraudulent traders and suspicious behaviors in an unsupervised manner? Can we detect them in constant time and memory? Fraud detection in e-markets is increasingly challenging due to the scale and complexity of multi-aspect d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering science and technology, an international journal Ročník 69; s. 102119
Hlavní autoři: Khodabandehlou, Samira, Hashemi Golpayegani, Alireza
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.09.2025
Elsevier
Témata:
ISSN:2215-0986, 2215-0986
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Given a vast online stream of transactions in e-markets, how can we detect fraudulent traders and suspicious behaviors in an unsupervised manner? Can we detect them in constant time and memory? Fraud detection in e-markets is increasingly challenging due to the scale and complexity of multi-aspect data streams. This study introduces SATrade, an unsupervised and scalable approach for real-time anomaly detection in big multi-aspect data streams. This approach proposes two novel Locality-Sensitive Hashing (LSH) functions: Gaussian projections to preserve numerical distances and collision-resistant linear hashing to prevent the increase in dimensionality of the categorical data. The main contributions include the Collusiveness metric, which detects group anomalies through statistical divergence analysis, and the RR-ISF, which prioritizes rare burst patterns. An exponential decay mechanism (λ) ensures adaptability to evolving fraud tactics without retraining, while PCA handles feature correlation. In extensive experiments on five real datasets, using both synthetic and real labels, SATrade achieved 99 % AUC, 93 % F-measure, and 0.2 ms/record latency, which is a significant improvement over the six baseline methods. The framework’s interpretability allows tracing anomalies to fraudulent behaviors like sudden order spikes. The constant memory consumption of 0.25 MB per record and linear scalability make SATrade suitable for high-frequency environments and online platforms.
AbstractList Given a vast online stream of transactions in e-markets, how can we detect fraudulent traders and suspicious behaviors in an unsupervised manner? Can we detect them in constant time and memory? Fraud detection in e-markets is increasingly challenging due to the scale and complexity of multi-aspect data streams. This study introduces SATrade, an unsupervised and scalable approach for real-time anomaly detection in big multi-aspect data streams. This approach proposes two novel Locality-Sensitive Hashing (LSH) functions: Gaussian projections to preserve numerical distances and collision-resistant linear hashing to prevent the increase in dimensionality of the categorical data. The main contributions include the Collusiveness metric, which detects group anomalies through statistical divergence analysis, and the RR-ISF, which prioritizes rare burst patterns. An exponential decay mechanism (λ) ensures adaptability to evolving fraud tactics without retraining, while PCA handles feature correlation. In extensive experiments on five real datasets, using both synthetic and real labels, SATrade achieved 99 % AUC, 93 % F-measure, and 0.2 ms/record latency, which is a significant improvement over the six baseline methods. The framework’s interpretability allows tracing anomalies to fraudulent behaviors like sudden order spikes. The constant memory consumption of 0.25 MB per record and linear scalability make SATrade suitable for high-frequency environments and online platforms.
ArticleNumber 102119
Author Hashemi Golpayegani, Alireza
Khodabandehlou, Samira
Author_xml – sequence: 1
  givenname: Samira
  orcidid: 0000-0003-3618-1926
  surname: Khodabandehlou
  fullname: Khodabandehlou, Samira
  email: s.khodabandehlou@aut.ac.ir
  organization: Department of Computer Engineering, Hamedan University of Technology, Hamedan, Iran
– sequence: 2
  givenname: Alireza
  surname: Hashemi Golpayegani
  fullname: Hashemi Golpayegani, Alireza
  email: sa.hashemi@aut.ac.ir
  organization: APA Research Center & Department of Information Technology Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
BookMark eNp9kM1OAyEURonRxL--gQsewKnAFNrZmBij1qTRhbomt3BRxpmhAdrEtxcdY1y5gnzc7-Ryjsn-EAYk5IyzKWdcXbTTFlM2b1PBhCyR4LzZI0dCcFmxZqH2_9wPySSlljHGmzIm1RF5fwg77GiPOXqTKAyWrp6WFLrXEH1-6xN1IdLtkLYbjDuf0J7TiNBV2fdYxkMP3Qe1mNFkHwbqB9pvu-wrSJsSUQsZaMql0qdTcuCgSzj5OU_Iy-3N8_WyWj3e3V9frSpTqyZXaj1H6QAkWlwY5lzjHBNOcSFtI6Xi5U1JBou1qG1tncUaGS8l5MjnVtQn5H7k2gCt3kTfQ_zQAbz-DkJ81RCzNx1qU0ssTBRSsBkKtlZzNQMHtasXs7UwhTUbWSaGlCK6Xx5n-su_bvXoX3_516P_Ursca1j-ufMYdTIeB4PWx6KlLOL_B3wCXq-UAw
Cites_doi 10.1016/j.dss.2016.09.003
10.1145/276698.276876
10.1016/j.knosys.2015.07.013
10.1145/2133360.2133363
10.1002/hf2.10026
10.1145/3494564
10.1007/s13278-024-01262-5
10.1016/j.eswa.2016.10.051
10.1007/s10618-023-00960-6
10.1109/TNSM.2020.3037019
10.1017/9781108684163
10.1016/j.ipm.2023.103306
10.1016/j.eswa.2011.04.066
10.1109/TII.2021.3139363
10.1016/j.eswa.2021.116225
10.1504/IJECRM.2016.082187
10.1145/342009.335388
10.1016/j.physa.2018.09.011
10.1016/j.neucom.2019.03.006
10.1007/s10614-021-10131-8
10.1145/1541880.1541882
10.1007/s10618-007-0076-8
10.21105/joss.01336
10.1145/2523813
10.1109/TNNLS.2015.2480959
10.1145/3641857
10.1109/ACCESS.2021.3100359
10.1016/j.dss.2010.08.006
10.1007/s10618-024-01060-9
10.1145/3442381.3450023
10.1016/j.procs.2019.01.007
10.1016/j.cose.2015.09.005
10.1109/CEC.2019.8789938
10.1016/j.jalgor.2003.12.001
10.1016/j.jnca.2015.11.016
10.1007/s10618-023-00999-5
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jestch.2025.102119
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2215-0986
ExternalDocumentID oai_doaj_org_article_c35e955e25204e20b6764afa3f384b2c
10_1016_j_jestch_2025_102119
S2215098625001740
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
O9-
OK1
RIG
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c369t-6b7e5faa5ede8c0ff9ff02f6125d95561faa650a8b23d3dfde3e01b7ee1e17d23
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001530632000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2215-0986
IngestDate Fri Oct 03 12:41:56 EDT 2025
Sat Oct 25 04:55:36 EDT 2025
Sat Nov 15 16:53:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Real-time anomaly detection
Stream mining
Market manipulation detection
Multi-aspect data
Locality-sensitive hashing
Unsupervised learning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-6b7e5faa5ede8c0ff9ff02f6125d95561faa650a8b23d3dfde3e01b7ee1e17d23
ORCID 0000-0003-3618-1926
OpenAccessLink https://doaj.org/article/c35e955e25204e20b6764afa3f384b2c
ParticipantIDs doaj_primary_oai_doaj_org_article_c35e955e25204e20b6764afa3f384b2c
crossref_primary_10_1016_j_jestch_2025_102119
elsevier_sciencedirect_doi_10_1016_j_jestch_2025_102119
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Engineering science and technology, an international journal
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bartos, Mullapudi, Troutman (b0270) 2019; 4
Khodabandehlou, Alireza Hashemi Golpayegani (b0045) 2022; 30
S.C. Tan, K.M. Ting, T.F. Liu. Fast anomaly detection for streaming data. In: Proceedings of the Twenty-Second international joint conference on Artificial Intelligence. Barcelona, Catalonia, Spain: AAAI Press; 2011. p. 1511–6. (IJCAI’11).
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b0265) 2011; 12
Shi, Sun, Shen, Cheng (b0190) 2019; 1
Azadifar, Rostami, Berahmand, Moradi, Oussalah (b0080) 2022; 1
Zhai, Cao, Yao, Ding, Li (b0035) 2017; 1
Lin, Cheng, Zeng, Huo, Zhang, Wang (b0275) 2024; 73
Zhang, Dou, He, Zhou, Leckie, Kotagiri (b0170) 2017
Cormode, Muthukrishnan (b0250) 2005; 55
Leangarun, Tangamchit, Thajchayapong (b0140) 2018
Uslu, Akal (b0125) 2022; 60
J. Leskovec, A. Rajaraman, J.D. Ullman. Higher Education from Cambridge University Press. Cambridge University Press; 2020 [cited 2025 May 18]. Mining of Massive Datasets.
Golmohammadi, Zaiane (b0180) 2015
W. Litwin. Linear hashing: a new tool for file and table addressing. In: Proceedings of the sixth international conference on Very Large Data Bases - Volume 6. Montreal, Quebec, Canada: VLDB Endowment; 1980. p. 212–23.
Duan, Zhang, Tong, Lu, Lv, Hou (b0090) 2024; 38
Heyden, Fouché, Arzamasov, Fenn, Kalinke, Böhm (b0060) 2024; 38
Ngai, Hu, Wong, Chen, Sun (b0100) 2011; 50
Martínez Miranda, Phelps, Howard (b0195) 2019; 2
Scaranti, Carvalho, Barbon, Lloret, Proença (b0230) 2022; 191
Chen, Xu, Zheng, Zhou, Yang, Detecting (b0185) 2019
P. Indyk, R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium on Theory of computing [Internet]. New York, NY, USA: Association for Computing Machinery; 1998 [cited 2025 May 17]. p. 604–13. (STOC ’98). Available from: https://dl.acm.org/doi/10.1145/276698.276876.
Cui, Gao (b0200) 2023; 4
Chandola, Banerjee, Kumar (b0245) 2009; 41
.
S. Bhatia, A. Jain, P. Li, R. Kumar, B. Hooi. MStream: Fast Anomaly Detection in Multi-Aspect Streams. In: Proceedings of the Web Conference 2021 [Internet]. New York, NY, USA: Association for Computing Machinery; 2021 [cited 2023 Jun 17]. p. 3371–82. (WWW ’21). Available from: https://dl.acm.org/doi/10.1145/3442381.3450023.
Wang, Xu, Huang, Yang (b0025) 2019; 28
Bansal, Sharma (b0050) 2024; 38
Sadgali, Sael, Benabbou (b0105) 2019; 1
Diaz, Theodoulidis, Sampaio (b0010) 2011; 38
Fanaee-T, Gama (b0055) 2015; 1
Liu, Ting, Zhou (b0215) 2012; 6
S. Guha, N. Mishra, G. Roy, O. Schrijvers. Robust Random Cut Forest Based Anomaly Detection on Streams. In: Proceedings of The 33rd International Conference on Machine Learning [Internet]. PMLR; 2016 [cited 2023 Jun 17]. p. 2712–21. Available from
Khodabandehlou, NikNafs (b0135) 2016; 10
Khodabandehlou, Hashemi Golpayegani (b0150) 2024; 14
Alexander, Cumming (b0005) 2020
Sinayobye, Kiwanuka, Kaawaase (b0110) 2018
B. Rizvi, A. Belatreche, A. Bouridane. A Dendritic Cell Immune System Inspired Approach for Stock Market Manipulation Detection. In: 2019 IEEE Congress on Evolutionary Computation (CEC) [Internet]. Wellington, New Zealand: IEEE; 2019 [cited 2020 Apr 23]. p. 3325–32. Available from
Sheikhpour, Berahmand, Forouzandeh (b0130) 2023; 7
Zeng, Xiao, Lin, Luo, Lin (b0075) 2023; 60
Qi, Yang, Zhou, Rafique, Ma (b0070) 2022; 18
Ahmed, Naser Mahmood, Hu (b0040) 2016; 1
Chullamonthon, Tangamchit (b0160) 2023; 15
Palshikar, Apte (b0175) 2008; 16
Liu, Li, Shi (b0205) 2024; 15
Eswaran, SedanSpot (b0095) 2018
Putina, Rossi (b0065) 2021; 18
Golmohammadi, Zaiane, Díaz (b0120) 2014
Cao, Li, Coleman, Belatreche, McGinnity (b0020) 2016; 27
Leangarun, Tangamchit, Thajchayapong (b0155) 2021; 9
Bhatia, Liu, Hooi, Yoon, Shin, Faloutsos (b0085) 2022; 16
M.M. Breunig, H.P. Kriegel, R.T. Ng, J. Sander. LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data [Internet]. New York, NY, USA: Association for Computing Machinery; 2000 [cited 2023 Jun 17]. p. 93–104. (SIGMOD ’00).
Zhai, Cao, Yao, Ding, Li (b0030) 2017; 1
Gama, Žliobaitė, Bifet, Pechenizkiy, Bouchachia (b0260) 2014; 46
Khodabandehlou, Golpayegani (b0015) 2024; 18
West, Bhattacharya (b0115) 2016; 1
Alexander (10.1016/j.jestch.2025.102119_b0005) 2020
Gama (10.1016/j.jestch.2025.102119_b0260) 2014; 46
Zeng (10.1016/j.jestch.2025.102119_b0075) 2023; 60
10.1016/j.jestch.2025.102119_b0255
Sheikhpour (10.1016/j.jestch.2025.102119_b0130) 2023; 7
Khodabandehlou (10.1016/j.jestch.2025.102119_b0135) 2016; 10
Martínez Miranda (10.1016/j.jestch.2025.102119_b0195) 2019; 2
Cormode (10.1016/j.jestch.2025.102119_b0250) 2005; 55
Khodabandehlou (10.1016/j.jestch.2025.102119_b0045) 2022; 30
Bansal (10.1016/j.jestch.2025.102119_b0050) 2024; 38
Ahmed (10.1016/j.jestch.2025.102119_b0040) 2016; 1
Putina (10.1016/j.jestch.2025.102119_b0065) 2021; 18
Zhang (10.1016/j.jestch.2025.102119_b0170) 2017
Ngai (10.1016/j.jestch.2025.102119_b0100) 2011; 50
Diaz (10.1016/j.jestch.2025.102119_b0010) 2011; 38
Duan (10.1016/j.jestch.2025.102119_b0090) 2024; 38
10.1016/j.jestch.2025.102119_b0225
Heyden (10.1016/j.jestch.2025.102119_b0060) 2024; 38
10.1016/j.jestch.2025.102119_b0220
cr-split#-10.1016/j.jestch.2025.102119_b0165.2
Leangarun (10.1016/j.jestch.2025.102119_b0140) 2018
cr-split#-10.1016/j.jestch.2025.102119_b0165.1
Bartos (10.1016/j.jestch.2025.102119_b0270) 2019; 4
Fanaee-T (10.1016/j.jestch.2025.102119_b0055) 2015; 1
Golmohammadi (10.1016/j.jestch.2025.102119_b0120) 2014
cr-split#-10.1016/j.jestch.2025.102119_b0210.1
cr-split#-10.1016/j.jestch.2025.102119_b0210.2
Lin (10.1016/j.jestch.2025.102119_b0275) 2024; 73
Eswaran (10.1016/j.jestch.2025.102119_b0095) 2018
Liu (10.1016/j.jestch.2025.102119_b0205) 2024; 15
Palshikar (10.1016/j.jestch.2025.102119_b0175) 2008; 16
Chullamonthon (10.1016/j.jestch.2025.102119_b0160) 2023; 15
10.1016/j.jestch.2025.102119_b0235
Sadgali (10.1016/j.jestch.2025.102119_b0105) 2019; 1
Shi (10.1016/j.jestch.2025.102119_b0190) 2019; 1
Scaranti (10.1016/j.jestch.2025.102119_b0230) 2022; 191
Chen (10.1016/j.jestch.2025.102119_b0185) 2019
Khodabandehlou (10.1016/j.jestch.2025.102119_b0015) 2024; 18
Golmohammadi (10.1016/j.jestch.2025.102119_b0180) 2015
Bhatia (10.1016/j.jestch.2025.102119_b0085) 2022; 16
Azadifar (10.1016/j.jestch.2025.102119_b0080) 2022; 1
Liu (10.1016/j.jestch.2025.102119_b0215) 2012; 6
Pedregosa (10.1016/j.jestch.2025.102119_b0265) 2011; 12
Leangarun (10.1016/j.jestch.2025.102119_b0155) 2021; 9
Cui (10.1016/j.jestch.2025.102119_b0200) 2023; 4
cr-split#-10.1016/j.jestch.2025.102119_b0145.1
cr-split#-10.1016/j.jestch.2025.102119_b0145.2
Zhai (10.1016/j.jestch.2025.102119_b0030) 2017; 1
Uslu (10.1016/j.jestch.2025.102119_b0125) 2022; 60
Khodabandehlou (10.1016/j.jestch.2025.102119_b0150) 2024; 14
10.1016/j.jestch.2025.102119_b0240
Cao (10.1016/j.jestch.2025.102119_b0020) 2016; 27
Wang (10.1016/j.jestch.2025.102119_b0025) 2019; 28
West (10.1016/j.jestch.2025.102119_b0115) 2016; 1
Sinayobye (10.1016/j.jestch.2025.102119_b0110) 2018
Zhai (10.1016/j.jestch.2025.102119_b0035) 2017; 1
Qi (10.1016/j.jestch.2025.102119_b0070) 2022; 18
Chandola (10.1016/j.jestch.2025.102119_b0245) 2009; 41
References_xml – volume: 27
  start-page: 2351
  year: 2016
  end-page: 2363
  ident: b0020
  article-title: Detecting wash trade in financial market using digraphs and dynamic programming
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0265
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2015
  end-page: 10
  ident: b0180
  article-title: Time series contextual anomaly detection for detecting market manipulation in stock market
  publication-title: In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA)
– volume: 28
  start-page: 46
  year: 2019
  end-page: 58
  ident: b0025
  article-title: Enhancing intraday stock price manipulation detection by leveraging recurrent neural networks with ensemble learning
  publication-title: Neurocomputing
– volume: 1
  start-page: 47
  year: 2016
  end-page: 66
  ident: b0115
  article-title: Intelligent financial fraud detection: a comprehensive review
  publication-title: Comput. Secur.
– start-page: 435
  year: 2014
  end-page: 441
  ident: b0120
  article-title: Detecting stock market manipulation using supervised learning algorithms
  publication-title: In: 2014 International Conference on Data Science and Advanced Analytics (DSAA)
– reference: S.C. Tan, K.M. Ting, T.F. Liu. Fast anomaly detection for streaming data. In: Proceedings of the Twenty-Second international joint conference on Artificial Intelligence. Barcelona, Catalonia, Spain: AAAI Press; 2011. p. 1511–6. (IJCAI’11).
– volume: 1
  start-page: 26
  year: 2017
  end-page: 41
  ident: b0030
  article-title: Computational intelligent hybrid model for detecting disruptive trading activity
  publication-title: Decis. Support Syst.
– volume: 38
  start-page: 501
  year: 2024
  end-page: 534
  ident: b0090
  article-title: An anomaly aware network embedding framework for unsupervised anomalous link detection
  publication-title: Data Min. Knowl. Disc.
– volume: 14
  start-page: 98
  year: 2024
  ident: b0150
  article-title: How do abnormal trading behaviors diffuse in electronic markets?
  publication-title: Soc. Netw. Anal. Min.
– volume: 4
  start-page: 1336
  year: 2019
  ident: b0270
  article-title: rrcf: implementation of the robust random cut forest algorithm for anomaly detection on streams
  publication-title: J. Open Source Softw.
– volume: 1
  start-page: 332
  year: 2015
  end-page: 345
  ident: b0055
  article-title: Multi-aspect-streaming tensor analysis
  publication-title: Knowl.-Based Syst.
– volume: 18
  start-page: 839
  year: 2021
  end-page: 854
  ident: b0065
  article-title: Online anomaly detection leveraging stream-based clustering and real-time telemetry
  publication-title: IEEE Trans. Netw. Serv. Manag.
– start-page: 293
  year: 2019
  end-page: 2935
  ident: b0185
  article-title: “Pump Dump Schemes” on Cryptocurrency Market using an improved Apriori Algorithm
  publication-title: In: 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE)
– start-page: 953
  year: 2018
  end-page: 958
  ident: b0095
  article-title: Detecting Anomalies in Edge Streams
  publication-title: In: 2018 IEEE International Conference on Data Mining (ICDM)
– volume: 4
  year: 2023
  ident: b0200
  article-title: WTEYE: on-chain wash trade detection and quantification for ERC20 cryptocurrencies
  publication-title: Blockchain: Res. Appl.
– volume: 9
  start-page: 106824
  year: 2021
  end-page: 106838
  ident: b0155
  article-title: Stock price manipulation detection using deep unsupervised learning: the case of Thailand
  publication-title: IEEE Access
– reference: M.M. Breunig, H.P. Kriegel, R.T. Ng, J. Sander. LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data [Internet]. New York, NY, USA: Association for Computing Machinery; 2000 [cited 2023 Jun 17]. p. 93–104. (SIGMOD ’00).
– volume: 38
  start-page: 12757
  year: 2011
  end-page: 12771
  ident: b0010
  article-title: Analysis of stock market manipulations using knowledge discovery techniques applied to intraday trade prices
  publication-title: Expert Syst. Appl.
– reference: B. Rizvi, A. Belatreche, A. Bouridane. A Dendritic Cell Immune System Inspired Approach for Stock Market Manipulation Detection. In: 2019 IEEE Congress on Evolutionary Computation (CEC) [Internet]. Wellington, New Zealand: IEEE; 2019 [cited 2020 Apr 23]. p. 3325–32. Available from:
– volume: 38
  start-page: 3831
  year: 2024
  end-page: 3867
  ident: b0050
  article-title: Statistical methods utilizing structural properties of time-evolving networks for event detection
  publication-title: Data Min. Knowl. Disc.
– volume: 191
  year: 2022
  ident: b0230
  article-title: Unsupervised online anomaly detection in software defined network environments
  publication-title: Expert Syst. Appl.
– volume: 15
  year: 2023
  ident: b0160
  article-title: Ensemble of supervised and unsupervised deep neural networks for stock price manipulation detection
  publication-title: Expert Syst. Appl.
– volume: 16
  start-page: 75:1
  year: 2022
  end-page: 75:22
  ident: b0085
  article-title: Real-time anomaly detection in edge streams
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 1
  start-page: 45
  year: 2019
  end-page: 54
  ident: b0105
  article-title: Performance of machine learning techniques in the detection of financial frauds
  publication-title: Procedia Comput. Sci.
– reference: P. Indyk, R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium on Theory of computing [Internet]. New York, NY, USA: Association for Computing Machinery; 1998 [cited 2025 May 17]. p. 604–13. (STOC ’98). Available from: https://dl.acm.org/doi/10.1145/276698.276876.
– volume: 73
  start-page: 1
  year: 2024
  end-page: 16
  ident: b0275
  article-title: Low-rank and sparse representation inspired interpretable network for hyperspectral anomaly detection
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 60
  start-page: 25
  year: 2022
  end-page: 45
  ident: b0125
  article-title: A machine learning approach to detection of trade-based manipulations in Borsa Istanbul
  publication-title: Comput. Econ.
– start-page: 2104
  year: 2018
  end-page: 2111
  ident: b0140
  article-title: Stock Price Manipulation Detection using Generative Adversarial Networks
  publication-title: In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI)
– start-page: 983
  year: 2017
  end-page: 994
  ident: b0170
  article-title: LSHiForest: a Generic Framework for Fast tree Isolation based Ensemble Anomaly Analysis
  publication-title: In: 2017 IEEE 33rd International Conference on Data Engineering
– volume: 1
  start-page: 19
  year: 2016
  end-page: 31
  ident: b0040
  article-title: A survey of network anomaly detection techniques
  publication-title: J. Netw. Comput. Appl.
– volume: 55
  start-page: 58
  year: 2005
  end-page: 75
  ident: b0250
  article-title: An improved data stream summary: the count-min sketch and its applications
  publication-title: J. Algorithms
– volume: 60
  year: 2023
  ident: b0075
  article-title: Double locality sensitive hashing Bloom filter for high-dimensional streaming anomaly detection
  publication-title: Inf. Process. Manag.
– volume: 50
  start-page: 559
  year: 2011
  end-page: 569
  ident: b0100
  article-title: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature
  publication-title: Decis. Support Syst.
– volume: 6
  start-page: 3:1
  year: 2012
  end-page: 3:39
  ident: b0215
  article-title: Isolation-based Anomaly Detection
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 30
  year: 2022
  ident: b0045
  article-title: Market manipulation detection: a systematic literature review
  publication-title: Expert Syst. Appl.
– volume: 7
  year: 2023
  ident: b0130
  article-title: Hessian-based semi-supervised feature selection using generalized uncorrelated constraint
  publication-title: Knowl.-Based Syst.
– reference: J. Leskovec, A. Rajaraman, J.D. Ullman. Higher Education from Cambridge University Press. Cambridge University Press; 2020 [cited 2025 May 18]. Mining of Massive Datasets.
– volume: 46
  start-page: 44:1
  year: 2014
  end-page: 44:37
  ident: b0260
  article-title: A survey on concept drift adaptation
  publication-title: ACM Comput. Surv.
– volume: 18
  start-page: 6503
  year: 2022
  end-page: 6511
  ident: b0070
  article-title: Fast anomaly identification based on multiaspect data streams for intelligent intrusion detection toward secure industry 4.0
  publication-title: IEEE Trans. Ind. Inf.
– reference: S. Guha, N. Mishra, G. Roy, O. Schrijvers. Robust Random Cut Forest Based Anomaly Detection on Streams. In: Proceedings of The 33rd International Conference on Machine Learning [Internet]. PMLR; 2016 [cited 2023 Jun 17]. p. 2712–21. Available from:
– reference: S. Bhatia, A. Jain, P. Li, R. Kumar, B. Hooi. MStream: Fast Anomaly Detection in Multi-Aspect Streams. In: Proceedings of the Web Conference 2021 [Internet]. New York, NY, USA: Association for Computing Machinery; 2021 [cited 2023 Jun 17]. p. 3371–82. (WWW ’21). Available from: https://dl.acm.org/doi/10.1145/3442381.3450023.
– volume: 41
  start-page: 15:1
  year: 2009
  end-page: 15:58
  ident: b0245
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput. Surv.
– start-page: 11
  year: 2018
  end-page: 19
  ident: b0110
  article-title: A State-of-the-Art Review of Machine Learning Techniques for Fraud Detection Research
  publication-title: In: 2018 IEEE/ACM Symposium on Software Engineering in Africa (SEiA)
– volume: 10
  start-page: 158
  year: 2016
  end-page: 178
  ident: b0135
  article-title: Improving customer loyalty evaluation methods in the grocery retail industry: a data mining approach
  publication-title: Int. J. Electron. Customer Relationship Manage.
– volume: 18
  start-page: 111:1
  year: 2024
  end-page: 111:29
  ident: b0015
  article-title: FiFrauD: unsupervised financial fraud detection in dynamic graph streams
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 16
  start-page: 135
  year: 2008
  end-page: 164
  ident: b0175
  article-title: Collusion set detection using graph clustering
  publication-title: Data Min. Knowl. Disc.
– volume: 15
  year: 2024
  ident: b0205
  article-title: A stock price manipulation detecting model with ensemble learning
  publication-title: Expert Syst. Appl.
– reference: .
– volume: 2
  start-page: 4
  year: 2019
  end-page: 36
  ident: b0195
  article-title: Order flow dynamics for prediction of order cancelation and applications to detect market manipulation
  publication-title: High Freq.
– start-page: 624 p
  year: 2020
  ident: b0005
  publication-title: Corruption and Fraud in Financial Markets: Malpractice, Misconduct and Manipulation
– volume: 1
  start-page: 225
  year: 2017
  end-page: 238
  ident: b0035
  article-title: Coarse and fine identification of collusive clique in financial market
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 1334
  year: 2024
  end-page: 1363
  ident: b0060
  article-title: Adaptive Bernstein change detector for high-dimensional data streams
  publication-title: Data Min. Knowl. Disc.
– reference: W. Litwin. Linear hashing: a new tool for file and table addressing. In: Proceedings of the sixth international conference on Very Large Data Bases - Volume 6. Montreal, Quebec, Canada: VLDB Endowment; 1980. p. 212–23.
– volume: 1
  year: 2022
  ident: b0080
  article-title: Graph-based relevancy-redundancy gene selection method for cancer diagnosis
  publication-title: Comput. Biol. Med.
– volume: 1
  start-page: 565
  year: 2019
  end-page: 571
  ident: b0190
  article-title: Detect colluded stock manipulation via clique in trading network
  publication-title: Phys. A
– volume: 1
  start-page: 26
  issue: 93
  year: 2017
  ident: 10.1016/j.jestch.2025.102119_b0030
  article-title: Computational intelligent hybrid model for detecting disruptive trading activity
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2016.09.003
– ident: 10.1016/j.jestch.2025.102119_b0235
  doi: 10.1145/276698.276876
– volume: 1
  start-page: 332
  issue: 89
  year: 2015
  ident: 10.1016/j.jestch.2025.102119_b0055
  article-title: Multi-aspect-streaming tensor analysis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.013
– ident: #cr-split#-10.1016/j.jestch.2025.102119_b0165.2
– volume: 6
  start-page: 3:1
  issue: 1
  year: 2012
  ident: 10.1016/j.jestch.2025.102119_b0215
  article-title: Isolation-based Anomaly Detection
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2133360.2133363
– volume: 7
  issue: 269
  year: 2023
  ident: 10.1016/j.jestch.2025.102119_b0130
  article-title: Hessian-based semi-supervised feature selection using generalized uncorrelated constraint
  publication-title: Knowl.-Based Syst.
– volume: 2
  start-page: 4
  issue: 1
  year: 2019
  ident: 10.1016/j.jestch.2025.102119_b0195
  article-title: Order flow dynamics for prediction of order cancelation and applications to detect market manipulation
  publication-title: High Freq.
  doi: 10.1002/hf2.10026
– start-page: 2104
  year: 2018
  ident: 10.1016/j.jestch.2025.102119_b0140
  article-title: Stock Price Manipulation Detection using Generative Adversarial Networks
– start-page: 1
  year: 2015
  ident: 10.1016/j.jestch.2025.102119_b0180
  article-title: Time series contextual anomaly detection for detecting market manipulation in stock market
– volume: 16
  start-page: 75:1
  issue: 4
  year: 2022
  ident: 10.1016/j.jestch.2025.102119_b0085
  article-title: Real-time anomaly detection in edge streams
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3494564
– volume: 14
  start-page: 98
  issue: 1
  year: 2024
  ident: 10.1016/j.jestch.2025.102119_b0150
  article-title: How do abnormal trading behaviors diffuse in electronic markets?
  publication-title: Soc. Netw. Anal. Min.
  doi: 10.1007/s13278-024-01262-5
– volume: 1
  start-page: 225
  issue: 69
  year: 2017
  ident: 10.1016/j.jestch.2025.102119_b0035
  article-title: Coarse and fine identification of collusive clique in financial market
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.051
– volume: 38
  start-page: 501
  issue: 2
  year: 2024
  ident: 10.1016/j.jestch.2025.102119_b0090
  article-title: An anomaly aware network embedding framework for unsupervised anomalous link detection
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-023-00960-6
– volume: 18
  start-page: 839
  issue: 1
  year: 2021
  ident: 10.1016/j.jestch.2025.102119_b0065
  article-title: Online anomaly detection leveraging stream-based clustering and real-time telemetry
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2020.3037019
– ident: 10.1016/j.jestch.2025.102119_b0255
  doi: 10.1017/9781108684163
– volume: 60
  issue: 3
  year: 2023
  ident: 10.1016/j.jestch.2025.102119_b0075
  article-title: Double locality sensitive hashing Bloom filter for high-dimensional streaming anomaly detection
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2023.103306
– start-page: 624 p
  year: 2020
  ident: 10.1016/j.jestch.2025.102119_b0005
– start-page: 983
  year: 2017
  ident: 10.1016/j.jestch.2025.102119_b0170
  article-title: LSHiForest: a Generic Framework for Fast tree Isolation based Ensemble Anomaly Analysis
– volume: 38
  start-page: 12757
  issue: 10
  year: 2011
  ident: 10.1016/j.jestch.2025.102119_b0010
  article-title: Analysis of stock market manipulations using knowledge discovery techniques applied to intraday trade prices
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.066
– volume: 30
  issue: 210
  year: 2022
  ident: 10.1016/j.jestch.2025.102119_b0045
  article-title: Market manipulation detection: a systematic literature review
  publication-title: Expert Syst. Appl.
– ident: #cr-split#-10.1016/j.jestch.2025.102119_b0210.2
– ident: 10.1016/j.jestch.2025.102119_b0225
– volume: 18
  start-page: 6503
  issue: 9
  year: 2022
  ident: 10.1016/j.jestch.2025.102119_b0070
  article-title: Fast anomaly identification based on multiaspect data streams for intelligent intrusion detection toward secure industry 4.0
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3139363
– volume: 191
  year: 2022
  ident: 10.1016/j.jestch.2025.102119_b0230
  article-title: Unsupervised online anomaly detection in software defined network environments
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116225
– start-page: 953
  year: 2018
  ident: 10.1016/j.jestch.2025.102119_b0095
  article-title: Detecting Anomalies in Edge Streams
– volume: 10
  start-page: 158
  issue: 2–4
  year: 2016
  ident: 10.1016/j.jestch.2025.102119_b0135
  article-title: Improving customer loyalty evaluation methods in the grocery retail industry: a data mining approach
  publication-title: Int. J. Electron. Customer Relationship Manage.
  doi: 10.1504/IJECRM.2016.082187
– ident: #cr-split#-10.1016/j.jestch.2025.102119_b0210.1
  doi: 10.1145/342009.335388
– start-page: 11
  year: 2018
  ident: 10.1016/j.jestch.2025.102119_b0110
  article-title: A State-of-the-Art Review of Machine Learning Techniques for Fraud Detection Research
– volume: 1
  start-page: 565
  issue: 513
  year: 2019
  ident: 10.1016/j.jestch.2025.102119_b0190
  article-title: Detect colluded stock manipulation via clique in trading network
  publication-title: Phys. A
  doi: 10.1016/j.physa.2018.09.011
– ident: 10.1016/j.jestch.2025.102119_b0240
– volume: 73
  start-page: 1
  year: 2024
  ident: 10.1016/j.jestch.2025.102119_b0275
  article-title: Low-rank and sparse representation inspired interpretable network for hyperspectral anomaly detection
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 28
  start-page: 46
  issue: 347
  year: 2019
  ident: 10.1016/j.jestch.2025.102119_b0025
  article-title: Enhancing intraday stock price manipulation detection by leveraging recurrent neural networks with ensemble learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.006
– volume: 60
  start-page: 25
  issue: 1
  year: 2022
  ident: 10.1016/j.jestch.2025.102119_b0125
  article-title: A machine learning approach to detection of trade-based manipulations in Borsa Istanbul
  publication-title: Comput. Econ.
  doi: 10.1007/s10614-021-10131-8
– volume: 4
  issue: 1
  year: 2023
  ident: 10.1016/j.jestch.2025.102119_b0200
  article-title: WTEYE: on-chain wash trade detection and quantification for ERC20 cryptocurrencies
  publication-title: Blockchain: Res. Appl.
– volume: 41
  start-page: 15:1
  issue: 3
  year: 2009
  ident: 10.1016/j.jestch.2025.102119_b0245
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– volume: 16
  start-page: 135
  issue: 2
  year: 2008
  ident: 10.1016/j.jestch.2025.102119_b0175
  article-title: Collusion set detection using graph clustering
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-007-0076-8
– volume: 4
  start-page: 1336
  issue: 35
  year: 2019
  ident: 10.1016/j.jestch.2025.102119_b0270
  article-title: rrcf: implementation of the robust random cut forest algorithm for anomaly detection on streams
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.01336
– volume: 46
  start-page: 44:1
  issue: 4
  year: 2014
  ident: 10.1016/j.jestch.2025.102119_b0260
  article-title: A survey on concept drift adaptation
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2523813
– volume: 27
  start-page: 2351
  issue: 11
  year: 2016
  ident: 10.1016/j.jestch.2025.102119_b0020
  article-title: Detecting wash trade in financial market using digraphs and dynamic programming
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2015.2480959
– volume: 15
  issue: 248
  year: 2024
  ident: 10.1016/j.jestch.2025.102119_b0205
  article-title: A stock price manipulation detecting model with ensemble learning
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 111:1
  issue: 5
  year: 2024
  ident: 10.1016/j.jestch.2025.102119_b0015
  article-title: FiFrauD: unsupervised financial fraud detection in dynamic graph streams
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3641857
– volume: 9
  start-page: 106824
  year: 2021
  ident: 10.1016/j.jestch.2025.102119_b0155
  article-title: Stock price manipulation detection using deep unsupervised learning: the case of Thailand
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3100359
– volume: 50
  start-page: 559
  issue: 3
  year: 2011
  ident: 10.1016/j.jestch.2025.102119_b0100
  article-title: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2010.08.006
– ident: #cr-split#-10.1016/j.jestch.2025.102119_b0145.2
– volume: 12
  start-page: 2825
  issue: 85
  year: 2011
  ident: 10.1016/j.jestch.2025.102119_b0265
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 3831
  issue: 6
  year: 2024
  ident: 10.1016/j.jestch.2025.102119_b0050
  article-title: Statistical methods utilizing structural properties of time-evolving networks for event detection
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-024-01060-9
– ident: #cr-split#-10.1016/j.jestch.2025.102119_b0165.1
  doi: 10.1145/3442381.3450023
– volume: 1
  start-page: 45
  issue: 148
  year: 2019
  ident: 10.1016/j.jestch.2025.102119_b0105
  article-title: Performance of machine learning techniques in the detection of financial frauds
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.01.007
– volume: 15
  issue: 220
  year: 2023
  ident: 10.1016/j.jestch.2025.102119_b0160
  article-title: Ensemble of supervised and unsupervised deep neural networks for stock price manipulation detection
  publication-title: Expert Syst. Appl.
– volume: 1
  start-page: 47
  issue: 57
  year: 2016
  ident: 10.1016/j.jestch.2025.102119_b0115
  article-title: Intelligent financial fraud detection: a comprehensive review
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2015.09.005
– ident: #cr-split#-10.1016/j.jestch.2025.102119_b0145.1
  doi: 10.1109/CEC.2019.8789938
– start-page: 435
  year: 2014
  ident: 10.1016/j.jestch.2025.102119_b0120
  article-title: Detecting stock market manipulation using supervised learning algorithms
– ident: 10.1016/j.jestch.2025.102119_b0220
– volume: 55
  start-page: 58
  issue: 1
  year: 2005
  ident: 10.1016/j.jestch.2025.102119_b0250
  article-title: An improved data stream summary: the count-min sketch and its applications
  publication-title: J. Algorithms
  doi: 10.1016/j.jalgor.2003.12.001
– volume: 1
  issue: 147
  year: 2022
  ident: 10.1016/j.jestch.2025.102119_b0080
  article-title: Graph-based relevancy-redundancy gene selection method for cancer diagnosis
  publication-title: Comput. Biol. Med.
– volume: 1
  start-page: 19
  issue: 60
  year: 2016
  ident: 10.1016/j.jestch.2025.102119_b0040
  article-title: A survey of network anomaly detection techniques
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2015.11.016
– start-page: 293
  year: 2019
  ident: 10.1016/j.jestch.2025.102119_b0185
  article-title: “Pump Dump Schemes” on Cryptocurrency Market using an improved Apriori Algorithm
– volume: 38
  start-page: 1334
  issue: 3
  year: 2024
  ident: 10.1016/j.jestch.2025.102119_b0060
  article-title: Adaptive Bernstein change detector for high-dimensional data streams
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1007/s10618-023-00999-5
SSID ssj0001921156
Score 2.30209
Snippet Given a vast online stream of transactions in e-markets, how can we detect fraudulent traders and suspicious behaviors in an unsupervised manner? Can we detect...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 102119
SubjectTerms Locality-sensitive hashing
Market manipulation detection
Multi-aspect data
Real-time anomaly detection
Stream mining
Unsupervised learning
Title Novel metrics and LSH algorithms for unsupervised, real-time anomaly detection in multi-aspect data streams
URI https://dx.doi.org/10.1016/j.jestch.2025.102119
https://doaj.org/article/c35e955e25204e20b6764afa3f384b2c
Volume 69
WOSCitedRecordID wos001530632000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2215-0986
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001921156
  issn: 2215-0986
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2215-0986
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001921156
  issn: 2215-0986
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9swECWKIEM7BEnaos5HwSFjhYqkJIpjEjjIkBoB0gLeBH4cEzu2bER2gCz57T2SdqApXbpokChSuBN478B37wg500Vhc81EpmqDCQrkMtMOgRwz2pSKWUT8sVD4Ro5G9XisbnutvgInLMkDJ8P9tKIEVZbAS54XwHNTyarQXgsv6sJwG3bfXKpeMjVNuAWhTrWtlYuErilus_H8gZdBsIAFcZ1eLIqS_b2Q1AszV_tkb4MP6Xn6rgPyAdpD8qmnGviZPI4WzzCj89ALy3ZUt47e3F1TPbtfYKb_MO8oAlG6brv1MmwEHbgfFKHhLAt95HH4Yq5nL9TBKrKwWjppaaQVZjqWXdJAGqWhhkTPuy_kz9Xw9-V1tumZkFlRqVVWGQml17oEB7XNvVfe59wHHONUaIWJzxCU6dpw4YTzDgTkDF8CBkw6Lr6SnXbRwjdCFddWVmAc2FCfVWkjMZUGRGDGe8ZgQLKt9ZplksZotpyxaZOs3QRrN8naA3IRTPw2Nghbxxvo7mbj7uZf7h4QuXVQs8EIKfbjVJN3lz_6H8sfk49hykQyOyE7q6c1nJJd-7yadE_f4z-I11-vw79TQ-S8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+metrics+and+LSH+algorithms+for+unsupervised%2C+real-time+anomaly+detection+in+multi-aspect+data+streams&rft.jtitle=Engineering+science+and+technology%2C+an+international+journal&rft.au=Khodabandehlou%2C+Samira&rft.au=Hashemi+Golpayegani%2C+Alireza&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=2215-0986&rft.eissn=2215-0986&rft.volume=69&rft_id=info:doi/10.1016%2Fj.jestch.2025.102119&rft.externalDocID=S2215098625001740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0986&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0986&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0986&client=summon