Data-Driven Evolutionary Algorithm With Perturbation-Based Ensemble Surrogates

Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function of the optimization problem is expensive or difficult to access. However, the performance of DDEAs relies on their surrogate quality and oft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 51; H. 8; S. 3925 - 3937
Hauptverfasser: Li, Jian-Yu, Zhan, Zhi-Hui, Wang, Hua, Zhang, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!