A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability
Heart rate is a vital sign, whereas heart rate variability is an important quantitative measure of cardiovascular regulation by the autonomic nervous system. Although the design of algorithms to compute heart rate and assess heart rate variability is an active area of research, none of the approache...
Uloženo v:
| Vydáno v: | American journal of physiology. Heart and circulatory physiology Ročník 288; číslo 1; s. H424 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.01.2005
|
| Témata: | |
| ISSN: | 0363-6135 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Heart rate is a vital sign, whereas heart rate variability is an important quantitative measure of cardiovascular regulation by the autonomic nervous system. Although the design of algorithms to compute heart rate and assess heart rate variability is an active area of research, none of the approaches considers the natural point-process structure of human heartbeats, and none gives instantaneous estimates of heart rate variability. We model the stochastic structure of heartbeat intervals as a history-dependent inverse Gaussian process and derive from it an explicit probability density that gives new definitions of heart rate and heart rate variability: instantaneous R-R interval and heart rate standard deviations. We estimate the time-varying parameters of the inverse Gaussian model by local maximum likelihood and assess model goodness-of-fit by Kolmogorov-Smirnov tests based on the time-rescaling theorem. We illustrate our new definitions in an analysis of human heartbeat intervals from 10 healthy subjects undergoing a tilt-table experiment. Although several studies have identified deterministic, nonlinear dynamical features in human heartbeat intervals, our analysis shows that a highly accurate description of these series at rest and in extreme physiological conditions may be given by an elementary, physiologically based, stochastic model. |
|---|---|
| AbstractList | Heart rate is a vital sign, whereas heart rate variability is an important quantitative measure of cardiovascular regulation by the autonomic nervous system. Although the design of algorithms to compute heart rate and assess heart rate variability is an active area of research, none of the approaches considers the natural point-process structure of human heartbeats, and none gives instantaneous estimates of heart rate variability. We model the stochastic structure of heartbeat intervals as a history-dependent inverse Gaussian process and derive from it an explicit probability density that gives new definitions of heart rate and heart rate variability: instantaneous R-R interval and heart rate standard deviations. We estimate the time-varying parameters of the inverse Gaussian model by local maximum likelihood and assess model goodness-of-fit by Kolmogorov-Smirnov tests based on the time-rescaling theorem. We illustrate our new definitions in an analysis of human heartbeat intervals from 10 healthy subjects undergoing a tilt-table experiment. Although several studies have identified deterministic, nonlinear dynamical features in human heartbeat intervals, our analysis shows that a highly accurate description of these series at rest and in extreme physiological conditions may be given by an elementary, physiologically based, stochastic model.Heart rate is a vital sign, whereas heart rate variability is an important quantitative measure of cardiovascular regulation by the autonomic nervous system. Although the design of algorithms to compute heart rate and assess heart rate variability is an active area of research, none of the approaches considers the natural point-process structure of human heartbeats, and none gives instantaneous estimates of heart rate variability. We model the stochastic structure of heartbeat intervals as a history-dependent inverse Gaussian process and derive from it an explicit probability density that gives new definitions of heart rate and heart rate variability: instantaneous R-R interval and heart rate standard deviations. We estimate the time-varying parameters of the inverse Gaussian model by local maximum likelihood and assess model goodness-of-fit by Kolmogorov-Smirnov tests based on the time-rescaling theorem. We illustrate our new definitions in an analysis of human heartbeat intervals from 10 healthy subjects undergoing a tilt-table experiment. Although several studies have identified deterministic, nonlinear dynamical features in human heartbeat intervals, our analysis shows that a highly accurate description of these series at rest and in extreme physiological conditions may be given by an elementary, physiologically based, stochastic model. Heart rate is a vital sign, whereas heart rate variability is an important quantitative measure of cardiovascular regulation by the autonomic nervous system. Although the design of algorithms to compute heart rate and assess heart rate variability is an active area of research, none of the approaches considers the natural point-process structure of human heartbeats, and none gives instantaneous estimates of heart rate variability. We model the stochastic structure of heartbeat intervals as a history-dependent inverse Gaussian process and derive from it an explicit probability density that gives new definitions of heart rate and heart rate variability: instantaneous R-R interval and heart rate standard deviations. We estimate the time-varying parameters of the inverse Gaussian model by local maximum likelihood and assess model goodness-of-fit by Kolmogorov-Smirnov tests based on the time-rescaling theorem. We illustrate our new definitions in an analysis of human heartbeat intervals from 10 healthy subjects undergoing a tilt-table experiment. Although several studies have identified deterministic, nonlinear dynamical features in human heartbeat intervals, our analysis shows that a highly accurate description of these series at rest and in extreme physiological conditions may be given by an elementary, physiologically based, stochastic model. |
| Author | Barbieri, Riccardo Alabi, Abdulrasheed A Matten, Eric C Brown, Emery N |
| Author_xml | – sequence: 1 givenname: Riccardo surname: Barbieri fullname: Barbieri, Riccardo email: barbieri@neurostat.mgh.harvard.edu organization: Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital, 55 Fruit St., Clinics 3, Boston, MA 02114-2696, USA. barbieri@neurostat.mgh.harvard.edu – sequence: 2 givenname: Eric C surname: Matten fullname: Matten, Eric C – sequence: 3 givenname: Abdulrasheed A surname: Alabi fullname: Alabi, Abdulrasheed A – sequence: 4 givenname: Emery N surname: Brown fullname: Brown, Emery N |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15374824$$D View this record in MEDLINE/PubMed |
| BookMark | eNpN0EtLw0AQwPE9VOxDP4Ege_KWuI9kk3grxRcUvOg5zCazdEuyidlNpd_eWCt4GgZ-_GFmSWauc0jIDWcx56m4h32_QxhCzFiSi1gwJmdkwaSSkeIynZOl93vGWJopeUnmPJXZ5JIFada076wLUT90FXpP267GhnaG7sYWHD1VNUKgE8LhAI1_oA6_aI3GOhts5_xJ_zg6QEAKrv6_HmCwoG1jw_GKXJgpgNfnuSIfT4_vm5do-_b8ullvo0qqIkS8MjznnBeKaakxT5GB0Vwkhk-gLnItAApQaSG0UIYlGcNEJcaIrMoNVmJF7n6701GfI_pQttZX2DTgsBt9qTIpRCGyCd6e4ahbrMt-sC0Mx_LvP-Ibc75q3A |
| CitedBy_id | crossref_primary_10_1016_j_brs_2019_02_003 crossref_primary_10_1109_TBME_2021_3073833 crossref_primary_10_1038_s41386_020_0651_x crossref_primary_10_1109_TSP_2018_2886149 crossref_primary_10_1152_ajpregu_00226_2018 crossref_primary_10_1038_s41598_022_21260_x crossref_primary_10_1109_RBME_2022_3220636 crossref_primary_10_1073_pnas_2004403117 crossref_primary_10_3934_fods_2021009 crossref_primary_10_1162_NECO_a_00156 crossref_primary_10_1109_ACCESS_2023_3339584 crossref_primary_10_1016_j_neuroimage_2019_116231 crossref_primary_10_1109_TFUZZ_2012_2183602 crossref_primary_10_1093_cercor_bhu172 crossref_primary_10_1007_s10700_010_9089_7 crossref_primary_10_1038_srep28567 crossref_primary_10_1109_TBME_2021_3071366 crossref_primary_10_1080_1463922X_2021_1913535 crossref_primary_10_1098_rsta_2020_0260 crossref_primary_10_1109_JBHI_2014_2307584 crossref_primary_10_1088_1361_6579_ac92bd crossref_primary_10_1007_s11845_016_1478_7 crossref_primary_10_1371_journal_pone_0210324 crossref_primary_10_1109_JBHI_2021_3100425 crossref_primary_10_1016_j_compbiomed_2023_107857 crossref_primary_10_1109_TBME_2017_2740259 crossref_primary_10_3390_ani9121030 crossref_primary_10_1016_j_neuroimage_2008_04_238 crossref_primary_10_1038_s41380_024_02600_x crossref_primary_10_1109_TBME_2006_888821 crossref_primary_10_1016_j_autneu_2016_10_003 crossref_primary_10_1109_TSP_2013_2253775 crossref_primary_10_3414_ME13_02_0036 crossref_primary_10_1109_JBHI_2021_3082876 crossref_primary_10_1111_cpf_12331 crossref_primary_10_1162_neco_2010_07_09_1047 crossref_primary_10_1109_TBME_2016_2632746 crossref_primary_10_1186_1687_6180_2012_214 crossref_primary_10_3389_fpsyg_2022_775173 crossref_primary_10_1109_TBME_2012_2204882 crossref_primary_10_1016_j_compbiomed_2025_110310 crossref_primary_10_1016_j_physa_2012_05_069 crossref_primary_10_1109_TBME_2013_2264162 crossref_primary_10_1109_TAC_2012_2187229 crossref_primary_10_1016_j_ijpsycho_2019_02_011 crossref_primary_10_1109_TBME_2011_2121906 crossref_primary_10_1109_JBHI_2024_3397589 crossref_primary_10_7717_peerj_18551 crossref_primary_10_1109_TBME_2021_3071348 crossref_primary_10_1016_j_brs_2023_10_007 crossref_primary_10_1007_s10439_012_0544_1 crossref_primary_10_1162_NECO_a_00548 crossref_primary_10_3390_app14156458 crossref_primary_10_1152_japplphysiol_00842_2017 crossref_primary_10_1016_j_jad_2015_09_075 crossref_primary_10_1109_TBME_2013_2294324 crossref_primary_10_1002_dev_21496 crossref_primary_10_3389_fphys_2022_752900 crossref_primary_10_1016_j_ufug_2018_11_007 crossref_primary_10_1049_iet_rsn_2018_5632 crossref_primary_10_1097_j_pain_0000000000000988 crossref_primary_10_1109_JTEHM_2023_3324249 crossref_primary_10_1016_j_jneumeth_2024_110348 crossref_primary_10_1111_psyp_14122 crossref_primary_10_3389_fnhum_2023_1286621 crossref_primary_10_1109_TBME_2012_2211356 crossref_primary_10_1016_j_jneumeth_2014_11_013 crossref_primary_10_1371_journal_pone_0254053 crossref_primary_10_1016_j_jneumeth_2012_08_009 crossref_primary_10_1038_srep42779 crossref_primary_10_1016_j_neuroimage_2017_02_052 crossref_primary_10_1080_02664763_2016_1201797 crossref_primary_10_1016_j_brs_2020_03_011 crossref_primary_10_1186_s12938_020_00788_x crossref_primary_10_1073_pnas_2319316121 crossref_primary_10_1109_TBME_2005_859779 crossref_primary_10_1109_TBME_2025_3546842 crossref_primary_10_1109_LSP_2024_3522853 crossref_primary_10_3390_ijerph19031856 crossref_primary_10_1007_s11517_012_0866_z crossref_primary_10_1109_TBME_2010_2041002 crossref_primary_10_1016_j_neuroimage_2019_04_075 crossref_primary_10_1109_TBME_2009_2016349 crossref_primary_10_1162_neco_a_01491 crossref_primary_10_1007_s11517_020_02311_9 crossref_primary_10_1016_j_biosystems_2008_03_011 crossref_primary_10_3390_e18050190 crossref_primary_10_1016_j_bspc_2019_101682 crossref_primary_10_1186_s40244_014_0013_2 crossref_primary_10_1109_TBME_2018_2797158 crossref_primary_10_1177_27536130241299389 crossref_primary_10_1049_syb2_12063 crossref_primary_10_1134_S1064226920070013 crossref_primary_10_1098_rsta_2020_0252 crossref_primary_10_1155_2017_2082351 crossref_primary_10_1109_TSP_2017_2690385 crossref_primary_10_1371_journal_pcbi_1009099 crossref_primary_10_1109_TBME_2023_3285491 crossref_primary_10_1109_JBHI_2013_2274211 crossref_primary_10_1016_j_cct_2025_107947 crossref_primary_10_1109_TFUZZ_2020_3029284 crossref_primary_10_1002_2017GL076730 crossref_primary_10_1038_srep04998 crossref_primary_10_1049_iet_spr_2013_0225 crossref_primary_10_1371_journal_pone_0004323 crossref_primary_10_1371_journal_pone_0105622 crossref_primary_10_1371_journal_pone_0231659 crossref_primary_10_3390_s21206798 crossref_primary_10_1016_j_bspc_2015_12_001 crossref_primary_10_1016_j_aei_2020_101051 crossref_primary_10_1109_TBME_2016_2549048 crossref_primary_10_1371_journal_pone_0020227 crossref_primary_10_1109_TSP_2018_2853144 crossref_primary_10_1016_j_resp_2016_12_012 crossref_primary_10_1109_TSP_2020_3010197 crossref_primary_10_1007_s10439_010_0179_z |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1152/ajpheart.00482.2003 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| ExternalDocumentID | 15374824 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: DA-015644 – fundername: NIMH NIH HHS grantid: MH-61637 – fundername: NIMH NIH HHS grantid: MH-59733 |
| GroupedDBID | --- 23M 2WC 39C 3O- 4.4 53G 5GY 5VS 6J9 8M5 AAFWJ ABJNI ACBEA ACIWK ACPRK ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP BTFSW C1A CGR CUY CVF DIK E3Z EBS ECM EIF EJD EMOBN F5P GX1 H13 ITBOX KQ8 NPM OK1 P2P PQQKQ RAP RHF RHI RPL RPRKH TR2 UKR W8F WH7 WOQ XSW YSK YYP ~02 7X8 |
| ID | FETCH-LOGICAL-c369t-1cf18111960b3be85e0afb124f1c36d98b2aa9a6592b26f0470e464ff27c8fec2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 225 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000225733000057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0363-6135 |
| IngestDate | Fri Jul 11 09:46:40 EDT 2025 Sat Sep 28 07:47:56 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-1cf18111960b3be85e0afb124f1c36d98b2aa9a6592b26f0470e464ff27c8fec2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 15374824 |
| PQID | 67322927 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_67322927 pubmed_primary_15374824 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-Jan 20050101 |
| PublicationDateYYYYMMDD | 2005-01-01 |
| PublicationDate_xml | – month: 01 year: 2005 text: 2005-Jan |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | American journal of physiology. Heart and circulatory physiology |
| PublicationTitleAlternate | Am J Physiol Heart Circ Physiol |
| PublicationYear | 2005 |
| SSID | ssj0005763 |
| Score | 2.2867308 |
| Snippet | Heart rate is a vital sign, whereas heart rate variability is an important quantitative measure of cardiovascular regulation by the autonomic nervous system.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | H424 |
| SubjectTerms | Adult Electrocardiography Female Heart Rate Humans Likelihood Functions Male Models, Cardiovascular Normal Distribution Tilt-Table Test |
| Title | A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/15374824 https://www.proquest.com/docview/67322927 |
| Volume | 288 |
| WOSCitedRecordID | wos000225733000057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH9MJ-LFj82P-ZmDeKvrR7o2IsgQh5eNHRR2K0mawETb6upg_70vaYtexIOXQEsK7cvryy95L78fwGXKhNIRD5yYUmUWKKETS-k5jFHuC6okrcUmoskkns3YtAW3zVkYU1bZxEQbqNNcmj3y_iBC12N-dFe8O0YzyuRWawGNNWgHCGRMQVc0--YKRyQdNJlKnLTCmnMIJ6w-fymMXnR5bRzY0lEGvyNMO9OMdv73jruwXSNMMqxcYg9aKutAd5jh6vptRa6Irfm0m-kd2BzXqfUuvA5Jkc-z0imqowPEauSQXBMr40fslwiM3GRuyyTRbW8IYnKSKj3PqsIv29v0I4aAgvAs_Xm5xGV5xQq-2ofn0cPT_aNTSzE4Mhiw0vGkRijg4e_qikCoOFQu1wKxgfawQ8pi4XPOuMnRCn-gXRq5ig6o1n4kY62kfwDrWZ6pIyAcQYLmgdYei6kvsAljbljzzH1Bwx5cNMZN0NVN_oJnKv9cJI15e3BYjU9SVIwcCYbtCAeSHv_57AlsWfJVu4lyCm2N1lJnsCGX5XzxcW49CNvJdPwFK7XRrw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+point-process+model+of+human+heartbeat+intervals%3A+new+definitions+of+heart+rate+and+heart+rate+variability&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Barbieri%2C+Riccardo&rft.au=Matten%2C+Eric+C&rft.au=Alabi%2C+Abdulrasheed+A&rft.au=Brown%2C+Emery+N&rft.date=2005-01-01&rft.issn=0363-6135&rft.volume=288&rft.issue=1&rft.spage=H424&rft_id=info:doi/10.1152%2Fajpheart.00482.2003&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon |