A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability

Heart rate is a vital sign, whereas heart rate variability is an important quantitative measure of cardiovascular regulation by the autonomic nervous system. Although the design of algorithms to compute heart rate and assess heart rate variability is an active area of research, none of the approache...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Heart and circulatory physiology Jg. 288; H. 1; S. H424
Hauptverfasser: Barbieri, Riccardo, Matten, Eric C, Alabi, Abdulrasheed A, Brown, Emery N
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.01.2005
Schlagworte:
ISSN:0363-6135
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heart rate is a vital sign, whereas heart rate variability is an important quantitative measure of cardiovascular regulation by the autonomic nervous system. Although the design of algorithms to compute heart rate and assess heart rate variability is an active area of research, none of the approaches considers the natural point-process structure of human heartbeats, and none gives instantaneous estimates of heart rate variability. We model the stochastic structure of heartbeat intervals as a history-dependent inverse Gaussian process and derive from it an explicit probability density that gives new definitions of heart rate and heart rate variability: instantaneous R-R interval and heart rate standard deviations. We estimate the time-varying parameters of the inverse Gaussian model by local maximum likelihood and assess model goodness-of-fit by Kolmogorov-Smirnov tests based on the time-rescaling theorem. We illustrate our new definitions in an analysis of human heartbeat intervals from 10 healthy subjects undergoing a tilt-table experiment. Although several studies have identified deterministic, nonlinear dynamical features in human heartbeat intervals, our analysis shows that a highly accurate description of these series at rest and in extreme physiological conditions may be given by an elementary, physiologically based, stochastic model.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0363-6135
DOI:10.1152/ajpheart.00482.2003