Joint source-decoding in large scale sensor networks using Markov random field models

An approach to scalable joint source decoding in large-scale sensor networks, based on Markov-random filed (MRF) modeling of the spatio-temporal correlation in the observations is presented. This approach exploits the correlation among a multitude of sensors for joint decoding at a central decoder,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing Jg. 90; H. 12; S. 3134 - 3146
1. Verfasser: Yahampath, Pradeepa
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.12.2010
Elsevier
Schlagworte:
ISSN:0165-1684, 1872-7557
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An approach to scalable joint source decoding in large-scale sensor networks, based on Markov-random filed (MRF) modeling of the spatio-temporal correlation in the observations is presented. This approach exploits the correlation among a multitude of sensors for joint decoding at a central decoder, while using simple distributed quantizers in individual sensors. The decoder derivations are provided for Slepian–Wolf coded quantization based on both sample-by-sample (scalar) binning and vector binning schemes constructed via channel code partitioning. Simulation results are presented to demonstrate the performance achievable with the proposed decoding approach.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2010.05.019