Joint source-decoding in large scale sensor networks using Markov random field models
An approach to scalable joint source decoding in large-scale sensor networks, based on Markov-random filed (MRF) modeling of the spatio-temporal correlation in the observations is presented. This approach exploits the correlation among a multitude of sensors for joint decoding at a central decoder,...
Gespeichert in:
| Veröffentlicht in: | Signal processing Jg. 90; H. 12; S. 3134 - 3146 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.12.2010
Elsevier |
| Schlagworte: | |
| ISSN: | 0165-1684, 1872-7557 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | An approach to scalable joint source decoding in large-scale sensor networks, based on Markov-random filed (MRF) modeling of the spatio-temporal correlation in the observations is presented. This approach exploits the correlation among a multitude of sensors for joint decoding at a central decoder, while using simple distributed quantizers in individual sensors. The decoder derivations are provided for Slepian–Wolf coded quantization based on both sample-by-sample (scalar) binning and vector binning schemes constructed via channel code partitioning. Simulation results are presented to demonstrate the performance achievable with the proposed decoding approach. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0165-1684 1872-7557 |
| DOI: | 10.1016/j.sigpro.2010.05.019 |