Multi-Hop Network With Multiple Decision Centers Under Expected-Rate Constraints
We consider a multi-hop distributed hypothesis testing problem with multiple decision centers (DCs) for testing against independence and where the observations obey some Markov chain. For this system, we characterize the fundamental type-II error exponents region, i.e., the type-II error exponents t...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 69; H. 7; S. 4255 - 4283 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We consider a multi-hop distributed hypothesis testing problem with multiple decision centers (DCs) for testing against independence and where the observations obey some Markov chain. For this system, we characterize the fundamental type-II error exponents region, i.e., the type-II error exponents that the various DCs can achieve simultaneously, under expected-rate constraints. Our results show that this fundamental exponents region is boosted compared to the region under maximum-rate constraints, and that it depends on the permissible type-I error probabilities. When all DCs have equal permissible type-I error probabilities, the exponents region is rectangular and all DCs can simultaneously achieve their optimal type-II error exponents. When the DCs have different permissible type-I error probabilities, a tradeoff between the type-II error exponents at the different DCs arises. New achievability and converse proofs are presented. For the achievability, a new multiplexing and rate-sharing strategy is proposed. The converse proof is based on applying different change of measure arguments in parallel and on proving asymptotic Markov chains. For the special cases <inline-formula> <tex-math notation="LaTeX">K \in \{2,3\} </tex-math></inline-formula>, and for arbitrary <inline-formula> <tex-math notation="LaTeX">K\geq 2 </tex-math></inline-formula> when all permissible type-I error probabilities at the various DCs are equal, we provide simplified expressions for the exponents region; a similar simplification is conjectured for the general case. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2023.3238339 |