A novel all-neighbor fuzzy association approach for multitarget tracking in a cluttered environment

This paper proposes a novel all-neighbor fuzzy association approach for multitarget tracking in a cluttered environment. It performs data association with a little prior knowledge and updates the predicted target state estimate using a fuzzy weighted sum of innovations. Unlike the joint probabilisti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing Ročník 91; číslo 8; s. 2001 - 2015
Hlavní autor: Aziz, Ashraf M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.08.2011
Elsevier
Témata:
ISSN:0165-1684, 1872-7557
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a novel all-neighbor fuzzy association approach for multitarget tracking in a cluttered environment. It performs data association with a little prior knowledge and updates the predicted target state estimate using a fuzzy weighted sum of innovations. Unlike the joint probabilistic data association filter, in which the similarity measures are determined in terms of the conditional probability for all feasible data association hypothesis, the proposed fuzzy association approach determines the similarity measures between measurements and tracks in terms of possibility weights based on a partition matrix. The possibility weights are determined according to the fuzzy clustering algorithm. The proposed approach is able to perform all-neighbor association with a lower computational complexity in the expense of a little lower performance compared to the standard joint probabilistic data association filter. Computer simulation shows the feasibility and the efficiency of the proposed all-neighbor fuzzy association approach.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2011.03.007