A novel all-neighbor fuzzy association approach for multitarget tracking in a cluttered environment

This paper proposes a novel all-neighbor fuzzy association approach for multitarget tracking in a cluttered environment. It performs data association with a little prior knowledge and updates the predicted target state estimate using a fuzzy weighted sum of innovations. Unlike the joint probabilisti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing Jg. 91; H. 8; S. 2001 - 2015
1. Verfasser: Aziz, Ashraf M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.08.2011
Elsevier
Schlagworte:
ISSN:0165-1684, 1872-7557
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel all-neighbor fuzzy association approach for multitarget tracking in a cluttered environment. It performs data association with a little prior knowledge and updates the predicted target state estimate using a fuzzy weighted sum of innovations. Unlike the joint probabilistic data association filter, in which the similarity measures are determined in terms of the conditional probability for all feasible data association hypothesis, the proposed fuzzy association approach determines the similarity measures between measurements and tracks in terms of possibility weights based on a partition matrix. The possibility weights are determined according to the fuzzy clustering algorithm. The proposed approach is able to perform all-neighbor association with a lower computational complexity in the expense of a little lower performance compared to the standard joint probabilistic data association filter. Computer simulation shows the feasibility and the efficiency of the proposed all-neighbor fuzzy association approach.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2011.03.007