A cut-cell finite element method for Poisson’s equation on arbitrary planar domains
This article introduces a cut-cell finite element method for Poisson’s equation on arbitrarily shaped two-dimensional domains. The equation is solved on a Cartesian axis-aligned grid of 4-node elements which intersects the boundary of the domain in a smooth but arbitrary manner. Dirichlet boundary c...
Uloženo v:
| Vydáno v: | Computer methods in applied mechanics and engineering Ročník 383; s. 113875 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.09.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0045-7825, 1879-2138 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This article introduces a cut-cell finite element method for Poisson’s equation on arbitrarily shaped two-dimensional domains. The equation is solved on a Cartesian axis-aligned grid of 4-node elements which intersects the boundary of the domain in a smooth but arbitrary manner. Dirichlet boundary conditions are strongly imposed by a projection method, while Neumann boundary conditions require integration over a locally discretized boundary region. Representative numerical experiments demonstrate that the proposed method is stable and attains the asymptotic convergence rates expected of the corresponding unstructured body-fitted finite element method.
•A finite element method suitable for two-dimensional digitally-generated voxel-based meshes, e.g., using microCT.•A simple procedure that enables the accurate and stable depiction of curved boundaries for domains embedded in a Cartesian grid.•The algorithm is shown to preserve the asymptotic theoretical convergence rate of unstructured body-fitted meshes on a number of numerical tests.•A simple and efficient method that can be easily implemented in existing codes.•Formal convergence proof available in one-dimensional case.•A method that may be generalized to three dimensional meshes. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0045-7825 1879-2138 |
| DOI: | 10.1016/j.cma.2021.113875 |