A cut-cell finite element method for Poisson’s equation on arbitrary planar domains

This article introduces a cut-cell finite element method for Poisson’s equation on arbitrarily shaped two-dimensional domains. The equation is solved on a Cartesian axis-aligned grid of 4-node elements which intersects the boundary of the domain in a smooth but arbitrary manner. Dirichlet boundary c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods in applied mechanics and engineering Ročník 383; s. 113875
Hlavní autoři: Pande, Sushrut, Papadopoulos, Panayiotis, Babuška, Ivo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.09.2021
Elsevier BV
Témata:
ISSN:0045-7825, 1879-2138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article introduces a cut-cell finite element method for Poisson’s equation on arbitrarily shaped two-dimensional domains. The equation is solved on a Cartesian axis-aligned grid of 4-node elements which intersects the boundary of the domain in a smooth but arbitrary manner. Dirichlet boundary conditions are strongly imposed by a projection method, while Neumann boundary conditions require integration over a locally discretized boundary region. Representative numerical experiments demonstrate that the proposed method is stable and attains the asymptotic convergence rates expected of the corresponding unstructured body-fitted finite element method. •A finite element method suitable for two-dimensional digitally-generated voxel-based meshes, e.g., using microCT.•A simple procedure that enables the accurate and stable depiction of curved boundaries for domains embedded in a Cartesian grid.•The algorithm is shown to preserve the asymptotic theoretical convergence rate of unstructured body-fitted meshes on a number of numerical tests.•A simple and efficient method that can be easily implemented in existing codes.•Formal convergence proof available in one-dimensional case.•A method that may be generalized to three dimensional meshes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2021.113875