Preconditioned Conjugate Gradient and Multigrid Methods for Numerical Solution of Multicomponent Mass Transfer Equations II. Convection-Diffusion-Reaction Equations

This work continues our previous analysis concerning the performances of the nonlinear multigrid (the Full Approximation Storage algorithm) method and modified Picard preconditioned conjugate gradient methods for the numerical solution of the two-dimensional, steady-state, multicomponent mass transf...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical heat transfer. Part A, Applications Ročník 66; číslo 11; s. 1297 - 1319
Hlavní autoři: Juncu, Gheorghe, Nicola, Aurelian, Popa, Constantin, Stroila, Elena
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis Group 01.12.2014
Taylor & Francis Ltd
Témata:
ISSN:1040-7782, 1521-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work continues our previous analysis concerning the performances of the nonlinear multigrid (the Full Approximation Storage algorithm) method and modified Picard preconditioned conjugate gradient methods for the numerical solution of the two-dimensional, steady-state, multicomponent mass transfer equations. The present test problems are steady-state, linear and nonlinear, convection-diffusion-reaction equations. The upwind finite difference method was used to discretize the mathematical model equations. The numerical results obtained show good numerical performances.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1040-7782
1521-0634
DOI:10.1080/10407782.2014.915669