Improving Deep Neural Networks' Training for Image Classification With Nonlinear Conjugate Gradient-Style Adaptive Momentum
Momentum is crucial in stochastic gradient-based optimization algorithms for accelerating or improving training deep neural networks (DNNs). In deep learning practice, the momentum is usually weighted by a well-calibrated constant. However, tuning the hyperparameter for momentum can be a significant...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 35; no. 9; pp. 12288 - 12300 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.09.2024
|
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Momentum is crucial in stochastic gradient-based optimization algorithms for accelerating or improving training deep neural networks (DNNs). In deep learning practice, the momentum is usually weighted by a well-calibrated constant. However, tuning the hyperparameter for momentum can be a significant computational burden. In this article, we propose a novel adaptive momentum for improving DNNs training; this adaptive momentum, with no momentum-related hyperparameter required, is motivated by the nonlinear conjugate gradient (NCG) method. Stochastic gradient descent (SGD) with this new adaptive momentum eliminates the need for the momentum hyperparameter calibration, allows using a significantly larger learning rate, accelerates DNN training, and improves the final accuracy and robustness of the trained DNNs. For instance, SGD with this adaptive momentum reduces classification errors for training ResNet110 for CIFAR10 and CIFAR100 from 5.25% to 4.64% and 23.75% to 20.03%, respectively. Furthermore, SGD, with the new adaptive momentum, also benefits adversarial training and, hence, improves the adversarial robustness of the trained DNNs. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 2162-237X 2162-2388 2162-2388 |
| DOI: | 10.1109/TNNLS.2023.3255783 |