The mortar finite volume method with the Crouzeix–Raviart element for elliptic problems

We construct and analyse a mortar finite volume method for the discretization for selfadjoint elliptic boundary value problems in R 2. This method is based on the mortar Crouzeix–Raviart non-conforming finite element spaces. We prove the optimal order H 1-norm and L 2-norm error estimates between th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods in applied mechanics and engineering Ročník 192; číslo 1; s. 15 - 31
Hlavní autoři: Bi, Chunjia, Li, Likang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.01.2003
Elsevier
Témata:
ISSN:0045-7825, 1879-2138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We construct and analyse a mortar finite volume method for the discretization for selfadjoint elliptic boundary value problems in R 2. This method is based on the mortar Crouzeix–Raviart non-conforming finite element spaces. We prove the optimal order H 1-norm and L 2-norm error estimates between the exact solution and the mortar finite volume approximation of the elliptic problems.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0045-7825
1879-2138
DOI:10.1016/S0045-7825(02)00494-2