Non-monotonous accelerated parallel subgradient projection algorithm for convex feasibility problem

The usual projection methods for solving convex feasibility problem (CFP) may lead to slow convergence for some starting points due to the 'tunnelling effect', which is connected with the monotone behaviour of the sequence and the exact orthogonal projection used in algorithms. To overcome...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 63; číslo 4; s. 571 - 584
Hlavní autori: Dang, Yazheng, Gao, Yan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis Group 01.04.2014
Taylor & Francis LLC
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The usual projection methods for solving convex feasibility problem (CFP) may lead to slow convergence for some starting points due to the 'tunnelling effect', which is connected with the monotone behaviour of the sequence and the exact orthogonal projection used in algorithms. To overcome the effect, in this article, we apply the non-monotonous technique to the subgradient projection algorithm, instead of the exact orthogonal projection algorithm, to construct a non-monotonous parallel subgradient projection algorithm for solving CFP. Under some mild conditions, the convergence is shown. Preliminary numerical experiments also show that the proposed algorithm converges faster than that of the monotonous algorithm.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2012.677447