Solving elliptic interface problems with jump conditions on Cartesian grids
•A finite-volume numerical method for elliptic problems with discontinuous parameters and solutions.•Uniform Cartesian grids with implicitly described (the Level-Set Method) irregular interfaces.•Second-order accurate numerical solutions with first-order accurate gradients (in the L∞-norm).•Conditio...
Uloženo v:
| Vydáno v: | Journal of computational physics Ročník 407; s. 109269 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge
Elsevier Inc
15.04.2020
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •A finite-volume numerical method for elliptic problems with discontinuous parameters and solutions.•Uniform Cartesian grids with implicitly described (the Level-Set Method) irregular interfaces.•Second-order accurate numerical solutions with first-order accurate gradients (in the L∞-norm).•Condition number remains finite as the ratio of diffusion coefficients across the discontinuity approaches 0 or ∞.•Numerical examples in two and three spatial dimensions.
We present a simple numerical algorithm for solving elliptic equations where the diffusion coefficient, the source term, the solution and its flux are discontinuous across an irregular interface. The algorithm produces second-order accurate solutions and first-order accurate gradients in the L∞-norm on Cartesian grids. The condition number is bounded, regardless of the ratio of the diffusion constant and scales like that of the standard 5-point stencil approximation on a rectangular grid with no interface. Numerical examples are given in two and three spatial dimensions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0021-9991 1090-2716 |
| DOI: | 10.1016/j.jcp.2020.109269 |