Cosserat Rod Modeling of Continuum Robots from Newtonian and Lagrangian Perspectives

Cosserat rod theory proved efficient modeling performances in robotics, especially in the context of continuum robots, in the past decade. The implementation of such theory is far from being unique and straightforward. We consider the illustrative example of multisegment, general routing tendon actu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics Vol. 39; no. 3; pp. 2360 - 2378
Main Authors: Tummers, Matthias, Lebastard, Vincent, Boyer, Frederic, Troccaz, Jocelyne, Rosa, Benoit, Chikhaoui, M. Taha
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1552-3098, 1941-0468
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cosserat rod theory proved efficient modeling performances in robotics, especially in the context of continuum robots, in the past decade. The implementation of such theory is far from being unique and straightforward. We consider the illustrative example of multisegment, general routing tendon actuated continuum robots in their nominal static operating regime. This article details two main approaches based on Cosserat rod modeling, namely, the Newtonian and Lagrangian approaches. We provide a walk-through guide regarding theoretical derivations and numerical implementation of both approaches, together with a proof of equivalence. This comparative study is supplemented with novel contributions and extensions of each approach and in-depth discussion of their performances and applicability, as well as highlighting their special features.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2023.3238171