A quasilinear complexity algorithm for the numerical simulation of scattering from a two-dimensional radially symmetric potential

•A fast algorithm for the 2D variable coefficient Helmholtz equation in the radially symmetric case•Allows for the solution of problems which are hundreds of thousands of wavelengths in size on desktop computers•Lays the groundwork for algorithms for the more general case of nonradially symmetric co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational physics Ročník 410; s. 109401
Hlavní autor: Bremer, James
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge Elsevier Inc 01.06.2020
Elsevier Science Ltd
Témata:
ISSN:0021-9991, 1090-2716
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•A fast algorithm for the 2D variable coefficient Helmholtz equation in the radially symmetric case•Allows for the solution of problems which are hundreds of thousands of wavelengths in size on desktop computers•Lays the groundwork for algorithms for the more general case of nonradially symmetric coefficients Standard solvers for the variable coefficient Helmholtz equation in two spatial dimensions have running times which grow at least quadratically with the wavenumber k. Here, we describe a solver which applies only when the scattering potential is radially symmetric but whose running time is O(klog⁡(k)) in typical cases. We also present the results of numerical experiments demonstrating the properties of our solver, the code for which is publicly available.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2020.109401