On quadratic scalarization of vector optimization problems in Banach spaces

We study vector optimization problems in partially ordered Banach spaces and suppose that the objective mapping possesses a weakened property of lower semicontinuity and make no assumptions on the interior of the ordering cone. We discuss the so-called adaptive scalarization of such problems and sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable analysis Jg. 93; H. 5; S. 994 - 1009
Hauptverfasser: Kogut, Peter I., Manzo, Rosanna
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 04.05.2014
Taylor & Francis Ltd
Schlagworte:
ISSN:0003-6811, 1563-504X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study vector optimization problems in partially ordered Banach spaces and suppose that the objective mapping possesses a weakened property of lower semicontinuity and make no assumptions on the interior of the ordering cone. We discuss the so-called adaptive scalarization of such problems and show that the corresponding scalar non-linear optimization problems can be by-turn approximated by quadratic minimization problems.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0003-6811
1563-504X
DOI:10.1080/00036811.2013.809068