On quadratic scalarization of vector optimization problems in Banach spaces

We study vector optimization problems in partially ordered Banach spaces and suppose that the objective mapping possesses a weakened property of lower semicontinuity and make no assumptions on the interior of the ordering cone. We discuss the so-called adaptive scalarization of such problems and sho...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applicable analysis Ročník 93; číslo 5; s. 994 - 1009
Hlavní autoři: Kogut, Peter I., Manzo, Rosanna
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 04.05.2014
Taylor & Francis Ltd
Témata:
ISSN:0003-6811, 1563-504X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study vector optimization problems in partially ordered Banach spaces and suppose that the objective mapping possesses a weakened property of lower semicontinuity and make no assumptions on the interior of the ordering cone. We discuss the so-called adaptive scalarization of such problems and show that the corresponding scalar non-linear optimization problems can be by-turn approximated by quadratic minimization problems.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0003-6811
1563-504X
DOI:10.1080/00036811.2013.809068