On quadratic scalarization of vector optimization problems in Banach spaces
We study vector optimization problems in partially ordered Banach spaces and suppose that the objective mapping possesses a weakened property of lower semicontinuity and make no assumptions on the interior of the ordering cone. We discuss the so-called adaptive scalarization of such problems and sho...
Uloženo v:
| Vydáno v: | Applicable analysis Ročník 93; číslo 5; s. 994 - 1009 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
04.05.2014
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0003-6811, 1563-504X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study vector optimization problems in partially ordered Banach spaces and suppose that the objective mapping possesses a weakened property of lower semicontinuity and make no assumptions on the interior of the ordering cone. We discuss the so-called adaptive scalarization of such problems and show that the corresponding scalar non-linear optimization problems can be by-turn approximated by quadratic minimization problems. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0003-6811 1563-504X |
| DOI: | 10.1080/00036811.2013.809068 |