Optimal scheduling of clean energy storage and charging integrated system by fusing DE algorithm and kernel search algorithm
In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging systems has become increasingly prominent. This study proposes an optimal scheduling method that integrates Differential Evolution (DE) and Kerne...
Uloženo v:
| Vydáno v: | Energy Informatics Ročník 8; číslo 1; s. 33 - 21 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2025
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 2520-8942, 2520-8942 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging systems has become increasingly prominent. This study proposes an optimal scheduling method that integrates Differential Evolution (DE) and Kernel Search Optimization (KSO) algorithms. By incorporating DE’s mutation, crossover, and selection operations into the KSO framework, the method effectively avoids local optima while retaining KSO’s advantages in handling complex structures and large-scale data. Experimental results demonstrate that the convergence speed of the fusion algorithm is improved by 34.2%, 30.8%, 28.6%, and 23.4% over four other algorithms for hybrid functions, and by 56.7%, 52.9%, 25.3%, and 21.4% for combined functions. Additionally, the utilization of renewable energy increased from 40% to nearly 70% within 24 h. It can be seen that the convergence speed and renewable energy utilization of the fusion algorithm are significantly improved compared with the four baseline methods, highlighting its effectiveness in large-scale clean energy systems. This research provides an effective scheduling strategy for optimizing clean energy storage and charging systems. This study provides an effective scheduling strategy for optimizing clean energy storage and charging systems, and supports scalable and efficient energy management of urban and rural energy grids. The results show that the optimization of the integrated charging system can not only achieve optimal scheduling in a shorter time, but also reduce operating costs and resource waste, and effectively improve the overall operating efficiency of the energy system. Research to promote the efficient use of renewable energy will help reduce dependence on fossil fuels, thereby reducing greenhouse gas emissions and environmental pollution, which will have a positive impact on achieving the Sustainable Development goals and addressing climate change, and promote a win-win situation for the economy and the environment. |
|---|---|
| AbstractList | Abstract In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging systems has become increasingly prominent. This study proposes an optimal scheduling method that integrates Differential Evolution (DE) and Kernel Search Optimization (KSO) algorithms. By incorporating DE’s mutation, crossover, and selection operations into the KSO framework, the method effectively avoids local optima while retaining KSO’s advantages in handling complex structures and large-scale data. Experimental results demonstrate that the convergence speed of the fusion algorithm is improved by 34.2%, 30.8%, 28.6%, and 23.4% over four other algorithms for hybrid functions, and by 56.7%, 52.9%, 25.3%, and 21.4% for combined functions. Additionally, the utilization of renewable energy increased from 40% to nearly 70% within 24 h. It can be seen that the convergence speed and renewable energy utilization of the fusion algorithm are significantly improved compared with the four baseline methods, highlighting its effectiveness in large-scale clean energy systems. This research provides an effective scheduling strategy for optimizing clean energy storage and charging systems. This study provides an effective scheduling strategy for optimizing clean energy storage and charging systems, and supports scalable and efficient energy management of urban and rural energy grids. The results show that the optimization of the integrated charging system can not only achieve optimal scheduling in a shorter time, but also reduce operating costs and resource waste, and effectively improve the overall operating efficiency of the energy system. Research to promote the efficient use of renewable energy will help reduce dependence on fossil fuels, thereby reducing greenhouse gas emissions and environmental pollution, which will have a positive impact on achieving the Sustainable Development goals and addressing climate change, and promote a win-win situation for the economy and the environment. In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging systems has become increasingly prominent. This study proposes an optimal scheduling method that integrates Differential Evolution (DE) and Kernel Search Optimization (KSO) algorithms. By incorporating DE’s mutation, crossover, and selection operations into the KSO framework, the method effectively avoids local optima while retaining KSO’s advantages in handling complex structures and large-scale data. Experimental results demonstrate that the convergence speed of the fusion algorithm is improved by 34.2%, 30.8%, 28.6%, and 23.4% over four other algorithms for hybrid functions, and by 56.7%, 52.9%, 25.3%, and 21.4% for combined functions. Additionally, the utilization of renewable energy increased from 40% to nearly 70% within 24 h. It can be seen that the convergence speed and renewable energy utilization of the fusion algorithm are significantly improved compared with the four baseline methods, highlighting its effectiveness in large-scale clean energy systems. This research provides an effective scheduling strategy for optimizing clean energy storage and charging systems. This study provides an effective scheduling strategy for optimizing clean energy storage and charging systems, and supports scalable and efficient energy management of urban and rural energy grids. The results show that the optimization of the integrated charging system can not only achieve optimal scheduling in a shorter time, but also reduce operating costs and resource waste, and effectively improve the overall operating efficiency of the energy system. Research to promote the efficient use of renewable energy will help reduce dependence on fossil fuels, thereby reducing greenhouse gas emissions and environmental pollution, which will have a positive impact on achieving the Sustainable Development goals and addressing climate change, and promote a win-win situation for the economy and the environment. In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging systems has become increasingly prominent. This study proposes an optimal scheduling method that integrates Differential Evolution (DE) and Kernel Search Optimization (KSO) algorithms. By incorporating DE’s mutation, crossover, and selection operations into the KSO framework, the method effectively avoids local optima while retaining KSO’s advantages in handling complex structures and large-scale data. Experimental results demonstrate that the convergence speed of the fusion algorithm is improved by 34.2%, 30.8%, 28.6%, and 23.4% over four other algorithms for hybrid functions, and by 56.7%, 52.9%, 25.3%, and 21.4% for combined functions. Additionally, the utilization of renewable energy increased from 40% to nearly 70% within 24 h. It can be seen that the convergence speed and renewable energy utilization of the fusion algorithm are significantly improved compared with the four baseline methods, highlighting its effectiveness in large-scale clean energy systems. This research provides an effective scheduling strategy for optimizing clean energy storage and charging systems. This study provides an effective scheduling strategy for optimizing clean energy storage and charging systems, and supports scalable and efficient energy management of urban and rural energy grids. The results show that the optimization of the integrated charging system can not only achieve optimal scheduling in a shorter time, but also reduce operating costs and resource waste, and effectively improve the overall operating efficiency of the energy system. Research to promote the efficient use of renewable energy will help reduce dependence on fossil fuels, thereby reducing greenhouse gas emissions and environmental pollution, which will have a positive impact on achieving the Sustainable Development goals and addressing climate change, and promote a win-win situation for the economy and the environment. |
| ArticleNumber | 33 |
| Author | Lu, Songfu Wang, Xinhua Dang, Hua Jia, Yujie Su, Hao |
| Author_xml | – sequence: 1 givenname: Xinhua surname: Wang fullname: Wang, Xinhua organization: State Grid Xinxiang Electric Power Supply Company – sequence: 2 givenname: Yujie surname: Jia fullname: Jia, Yujie email: JYJ2024595@163.com organization: State Grid Xinxiang Electric Power Supply Company – sequence: 3 givenname: Hao surname: Su fullname: Su, Hao organization: State Grid Xinxiang Electric Power Supply Company – sequence: 4 givenname: Hua surname: Dang fullname: Dang, Hua organization: State Grid Xinxiang Electric Power Supply Company – sequence: 5 givenname: Songfu surname: Lu fullname: Lu, Songfu organization: State Grid Xinxiang Electric Power Supply Company |
| BookMark | eNp9UUtvEzEQtlCRKKV_gJMlzgt-rWMfUSlQqVIvcLbG9uxmw8YO9uYQiR-Pk0WUE6cZzXyPGX2vyVXKCQl5y9l7zo3-UJXgWnRM9B1jyqrOviDXohesM1aJq3_6V-S21h1jTJhe91Zck19Ph2Xaw0xr2GI8zlMaaR5omBESxYRlPNG65AIjUkiRhi2U8Qya0oJjgQUjrae64J76Ex2O9bz7dE9hHnOZlu3-wvqBJWHzQChh-7x7Q14OMFe8_VNvyPfP99_uvnaPT18e7j4-dkFqYzsRPdd-o0xvuNQ-ovVmsNH4qKOFoDiA4qJnkm8gsKCBB2YG4QOg2iCgvCEPq27MsHOH0h4uJ5dhcpdBLqODskztaeeVESC9tFxFJY03hvVq4BFR9VqYoWm9W7UOJf88Yl3cLh9Laue75q80l0qIhhIrKpRca8Hhrytn7hyaW0NzLTR3Cc3ZRpIrqTZwGrE8S_-H9RvAn50A |
| Cites_doi | 10.1016/j.joule.2023.02.005 10.1007/s42235-022-00207-y 10.1007/s10462-022-10328-9 10.1109/TII.2022.3145834 10.1007/s10479-021-04114-z 10.1007/s11356-023-27928-9 10.1007/s00366-021-01545-x 10.47852/bonviewAIA2202331 10.1146/annurev-resource-111920-022328 10.1007/s11042-021-11029-1 10.1016/j.aej.2023.09.066 10.1007/s10462-022-10199-0 10.1109/TCYB.2022.3175533 10.47852/bonviewAIA2202290 10.1007/s00366-021-01392-w 10.1108/EMJB-02-2022-0034 10.1016/j.isatra.2022.12.008 10.1002/for.2971 10.1049/cth2.12479 10.1007/s11356-022-23186-3 10.1007/s11831-023-09887-z 10.1109/TSTE.2022.3223684 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Dec 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Dec 2025 |
| DBID | C6C AAYXX CITATION 7SC 8FD ABUWG AEUYN AFKRA AZQEC BENPR CCPQU DWQXO JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.1186/s42162-025-00494-9 |
| DatabaseName | Springer Nature Open Access Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China Computer and Information Systems Abstracts Professional ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2520-8942 |
| EndPage | 21 |
| ExternalDocumentID | oai_doaj_org_article_b482a3b3914d438b88054f1dee45628f 10_1186_s42162_025_00494_9 |
| GroupedDBID | 0R~ AAFWJ AAJSJ AAKKN AASML ABEEZ ACACY ACULB ADBBV ADMLS AEUYN AFGXO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AMKLP ARCSS BCNDV BENPR C24 C6C CCPQU EBLON EBS GROUPED_DOAJ IAO ISR ITC OK1 PHGZM PHGZT PIMPY PROAC SOJ AAYXX AFFHD CITATION 7SC 8FD ABUWG AZQEC DWQXO JQ2 L7M L~C L~D M~E PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c3689-2db16b74858136bde9b8f9d8bd6d9ac41aa41250317ac0c6a1c08f2bcae47eae3 |
| IEDL.DBID | BENPR |
| ISSN | 2520-8942 |
| IngestDate | Tue Oct 14 19:08:47 EDT 2025 Sat Oct 11 05:45:02 EDT 2025 Sat Nov 29 08:10:03 EST 2025 Mon Jul 21 06:08:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Storage and charging integration Differential evolution algorithm Kernel search Clean energy Optimal scheduling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3689-2db16b74858136bde9b8f9d8bd6d9ac41aa41250317ac0c6a1c08f2bcae47eae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3174613422?pq-origsite=%requestingapplication% |
| PQID | 3174613422 |
| PQPubID | 4406324 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b482a3b3914d438b88054f1dee45628f proquest_journals_3174613422 crossref_primary_10_1186_s42162_025_00494_9 springer_journals_10_1186_s42162_025_00494_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Energy Informatics |
| PublicationTitleAbbrev | Energy Inform |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | X Fu (494_CR6) 2022; 14 JS Pan (494_CR19) 2023; 56 K Udaichi (494_CR12) 2023; 17 L Tightiz (494_CR16) 2022; 137 L Tightiz (494_CR17) 2023; 82 W Wang (494_CR3) 2022; 53 G Mehdi (494_CR21) 2022; 1 SKK Saho (494_CR18) 2022; 19 B Xi (494_CR10) 2023; 30 J Pang (494_CR15) 2022; 18 CC Montañés (494_CR7) 2023; 7 A Mahmoodi (494_CR14) 2024; 119 H Zhang (494_CR4) 2023; 39 MA Awadallah (494_CR2) 2023; 30 A Williams (494_CR22) 2023; 1 M Cai (494_CR11) 2022; 38 S Ali (494_CR8) 2023; 30 Z Hajirahimi (494_CR1) 2023; 56 M Mahbobi (494_CR5) 2023; 330 R Kumar (494_CR13) 2022; 81 LS Bennear (494_CR9) 2022; 14 J Hao (494_CR20) 2023; 42 |
| References_xml | – volume: 7 start-page: 437 issue: 3 year: 2023 ident: 494_CR7 publication-title: Joule doi: 10.1016/j.joule.2023.02.005 – volume: 19 start-page: 1522 issue: 5 year: 2022 ident: 494_CR18 publication-title: J Bionic Eng doi: 10.1007/s42235-022-00207-y – volume: 56 start-page: 6101 issue: 7 year: 2023 ident: 494_CR19 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10328-9 – volume: 18 start-page: 8786 issue: 12 year: 2022 ident: 494_CR15 publication-title: IEEE T Ind Inform doi: 10.1109/TII.2022.3145834 – volume: 330 start-page: 609 issue: 1 year: 2023 ident: 494_CR5 publication-title: Ann Oper Res doi: 10.1007/s10479-021-04114-z – volume: 30 start-page: 77668 issue: 31 year: 2023 ident: 494_CR8 publication-title: Environ Sci Pollut R doi: 10.1007/s11356-023-27928-9 – volume: 39 start-page: 1735 issue: 3 year: 2023 ident: 494_CR4 publication-title: Eng Comput-Germany doi: 10.1007/s00366-021-01545-x – volume: 1 start-page: 118 issue: 2 year: 2023 ident: 494_CR22 publication-title: Artif Intel Appl doi: 10.47852/bonviewAIA2202331 – volume: 14 start-page: 647 issue: 1 year: 2022 ident: 494_CR9 publication-title: Annu Rev Resour Econ doi: 10.1146/annurev-resource-111920-022328 – volume: 81 start-page: 34595 issue: 24 year: 2022 ident: 494_CR13 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11029-1 – volume: 82 start-page: 145 issue: 1 year: 2023 ident: 494_CR17 publication-title: Alex Eng J doi: 10.1016/j.aej.2023.09.066 – volume: 56 start-page: 1201 issue: 2 year: 2023 ident: 494_CR1 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10199-0 – volume: 53 start-page: 2685 issue: 4 year: 2022 ident: 494_CR3 publication-title: IEEE T Cybernetics doi: 10.1109/TCYB.2022.3175533 – volume: 1 start-page: 3 issue: 1 year: 2022 ident: 494_CR21 publication-title: Artif Intel Appl doi: 10.47852/bonviewAIA2202290 – volume: 38 start-page: 3611 issue: 4 year: 2022 ident: 494_CR11 publication-title: Eng Comput-Germany doi: 10.1007/s00366-021-01392-w – volume: 119 start-page: 1231 issue: 4 year: 2024 ident: 494_CR14 publication-title: Euromed J Bus doi: 10.1108/EMJB-02-2022-0034 – volume: 137 start-page: 471 issue: 1 year: 2022 ident: 494_CR16 publication-title: ISA doi: 10.1016/j.isatra.2022.12.008 – volume: 42 start-page: 1385 issue: 6 year: 2023 ident: 494_CR20 publication-title: J Forecasting doi: 10.1002/for.2971 – volume: 17 start-page: 2292 issue: 17 year: 2023 ident: 494_CR12 publication-title: IET Control Theory A doi: 10.1049/cth2.12479 – volume: 30 start-page: 14385 issue: 6 year: 2023 ident: 494_CR10 publication-title: Environ Sci Pollut R doi: 10.1007/s11356-022-23186-3 – volume: 30 start-page: 2831 issue: 5 year: 2023 ident: 494_CR2 publication-title: Arch Comput Method E doi: 10.1007/s11831-023-09887-z – volume: 14 start-page: 642 issue: 1 year: 2022 ident: 494_CR6 publication-title: IEEE T Sustain Energ doi: 10.1109/TSTE.2022.3223684 |
| SSID | ssj0002856592 |
| Score | 2.3106976 |
| Snippet | In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging... Abstract In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 33 |
| SubjectTerms | Algorithms Artificial intelligence Charging Clean energy Clean technology Climate action Climate change Computer Science Convergence Differential evolution algorithm Effectiveness Electric power grids Emissions Emissions control Energy industry Energy management Energy storage Energy utilization Evolutionary computation Greenhouse gases Information Systems and Communication Service Kernel search Operating costs Optimal scheduling Optimization Renewable energy Renewable resources Scheduling Search algorithms Storage and charging integration Sustainable development |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIouL6IgdvWmzSNE2OPvGkHhS8hcnLd1d2V0HwxztJd32BePGapDSdL5OZNDPfELLVlN4718gicu8KAcIVEEtbAIgIaFBjAz4Xm2hOT9XVlT7_UuorxYR19MCd4HatUBwqW2kmvKiUxfVWi8h8CMl3VzHtvmWjvxym7vIvozrdF06yZJTcHQrOJC9S9dbMiVLob5YoE_Z_8zJ_XIxme3M8T-bGjiLd6ya4QKZCu0jezlDDH7EZz6RoI1IqOe1HigOgpSGn8dEU7oibBIXW08yDlAZ9sEJ42nE3U_tKYwp6v6aHRxQervuD29HNY37qPgzagO_ISvDZt0Quj48uDk6Kcf2EwlUyBS95y6RthKoVq6T1QVsVtVfWS6_BCYaAIByo1g240klgrlSRWwdBNAFCtUym234bVgiVrmaOcYc2Lwgorfa1TL4GWKmiVa5HtieyNE8dTYbJxwslTSd5g5I3WfJG98h-EvfHyERxnRsQeDMG3vwFfI-sT8AyY70bGvwUgQ6K4LxHdiYAfnb_PqXV_5jSGpnlaYHlaJd1Mj0aPIcNMuNeRrfDwWZeoe-Ihup5 priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VyoFLKVDUbZfKh94gInYcxz62W1BPwIFK3Kzxa4F2s1V2QarUH1_bm4Co6KFc47HizHgejme-AfjYlM5Z24giMGcLjtwWGEpTIPKA0aGGBl1uNtGcnsrLS3XeF4Uthmz34UoyW-qs1lIcLTijghWp_WoGNSnUGrysqVQpkW_S1zjc5N9FdborHCpknpz6yAtlsP5HEeZfl6LZ15xsPW-Vr-FVH1uST6vNsA0vfLsDW0PfBtKr8S78Pot2YhYp48k2eppUkE7mgcQ52BKfiwFJSpqMpoZg60hGU0pE99gSjqwQoIn5RUJKnZ-SL8cEf0zn3fXyapZnffdd6-M7sio9jL2BbyfHF5OvRd-FobCVSClQzlBhGi5rSSthnFdGBuWkccIptJxGsUahRuPQoC2tQGpLGZix6Hnj0Vd7sN7OW_8WiLA1tZTZ6Dk9x9IoV4sUsaARMhhpR3AwSEX_XIFt6HxIkUKvGKsjY3VmrFYj-JwEd0-ZgLLzg3k31b3eacMlw8pUinLHK2miuap5oM77dPSTYQTjQey6196Fjp_CY5jDGRvB4SDmh-F_L-nd_5G_h02WdkrOjhnD-rK79fuwYe-W14vuQ97VfwAmQfTw priority: 102 providerName: Springer Nature |
| Title | Optimal scheduling of clean energy storage and charging integrated system by fusing DE algorithm and kernel search algorithm |
| URI | https://link.springer.com/article/10.1186/s42162-025-00494-9 https://www.proquest.com/docview/3174613422 https://doaj.org/article/b482a3b3914d438b88054f1dee45628f |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2520-8942 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002856592 issn: 2520-8942 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2520-8942 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002856592 issn: 2520-8942 databaseCode: BENPR dateStart: 20181001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2520-8942 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002856592 issn: 2520-8942 databaseCode: PIMPY dateStart: 20181001 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2520-8942 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002856592 issn: 2520-8942 databaseCode: C24 dateStart: 20181201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB3RlgOXFgSItCXyobdide31er0nREsqODSNEEjlZPkzIOimTQISEj--Y2c3UZHgwtXr3bX0xvPs8fgNwFFdeO9cLWnk3lFhhKMmFpYaI6JBQo218bnYRD0eq6urZtIF3BZdWmXvE7Oj9jOXYuQnyHMCqUdw_vrmlqaqUel0tSuhsQU7SakM7XzndDSefFhHWbiq0rlhf1tGyZOF4Exymqq4Zm0U2txjpCzcf2-1-ccBaead873_HfFj2O1WnOTNykSewIPQPoXfl-gqrrEZN7dINulOOplFgh1MS0K-D0hS3iR6G2JaT7KgUuq0lpfwZCUCTewvElP2_JS8HRHzfYpDWH65zm99C_M24D_ybNo8ewafzkcfz97RrhADdaVMWVDeMmlroSrFSml9aKyKjVfWS98YJxgii7iif6iNK5w0zBUqcutMEHUwoXwO2-2sDS-ASFcxx7hD8gzCFLbxlUyLFmOlila5ARz3YOibld6GzvsUJfUKOo3Q6QydbgZwmvBa90xa2blhNp_qbuppKxQ3pS0bJrwolUWPVYnIfAhp96fiAA57_HQ3gRd6A94AXvUWsHn89yHt__trB_CIJ9vLCTGHsL2c_wgv4aH7ufy6mA878x3C1hkXwxwfwLbJ-4vJ5zs2G_3I |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Lb9MwGP80OiS4MBCgdQzwAU4QLXEcxzlMCNimVdtKD0MaJ-NnQWzpaMvQJP4m_sZ9dpJWQ4LbDlxtx_Hj5-9hfw-AF2VqrTElTzy1JmGKmUT5VCdKMa-QofpS2ZhsohwOxclJNVqB350vTDCr7GhiJNR2YsId-RbyOYash1H65vx7ErJGhdfVLoVGA4sDd_kTVbbZ9mAH9_clpXu7x-_3kzarQGJyHkx6rM64LpkoRJZzbV2lha-s0JbbShmW4TBxkAj2UpnUcJWZVHiqjXKsdMrl2O8tWGUB7D1YHQ2ORp8WtzpUFOGdsvPOEXxrxmjGaRKyxsZYLEl1jQPGRAHXpNs_HmQjn9tb-99W6D7cayVq8rY5Ag9gxdUP4dcHJIVnWIzKOzLT4HNPJp5gA1UTF_0dSbALRWpKVG1JDBgVGi3CZ1jSBLkm-pL44B0wJju7RJ2OccrzL2fxq29uWjv8R5z0su4RfLyRCT-GXj2p3ToQborMZNSgcOCYSnVlCx6EMqW58FqYPrzqNl-eN_FEZNTDBJcNVCRCRUaoyKoP7wI-Fi1DLPBYMJmOZUtapGaCqlznVcYsy4VGilwwn1nngnYrfB82O7zIlkDN5BIsfXjdIW5Z_fchbfy7t-dwZ__46FAeDoYHT-AuDbiPxj-b0JtPf7incNtczL_Ops_ao0Pg801j8Qog7lkq |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxQxFH8RJMSLqGBcRenBm0yYdjqdzlGBjQazctCEW_P6tSzKLJldTUz84207MyBEDoTrtM10-j47773fA3hb5dYaU4nMM2syjtxk6HOdIXKPwaD6Cm1qNlFNJvLkpD7-p4o_ZbsPIcmupiGiNDXLvQvrOxGXYm_BGRUsi61YE8BJVq_AwxiRijy-39c7nKVfR2WMGw7VMv9des0iJeD-a97mjQBpsjvjjfvv-Ak87n1O8r5jkqfwwDXPYGPo50B68d6EP1-C_jgPM8ONN1igWKhO5p6ENdgQl4oESUymDCqIYGNJQlmKky4xJyzpkKGJ_k18TKmfkoNDgj-m83a2PD1Pq767tnHhHUnErsa24Nv48Ov-x6zvzpCZQsTUKKup0BWXpaSF0NbVWvraSm2FrdFwGsgdiB2URoUmNwKpyaVn2qDjlUNXPIfVZt64F0CEKamhzASL6jjmuraliJ4MaiG9lmYE7wYKqYsOhEOly4sUqjtYFQ5WpYNV9Qg-RCJezowA2unBvJ2qXh6V5pJhoYuacssLqYMaK7mn1rl4JZR-BNsDC6heqhcqfAoP7g9nbAS7A8mvhm_f0su7Td-B9eODsfr8aXL0Ch6xyDQpgWYbVpftT_ca1syv5WzRvknM_hdNuQDI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+scheduling+of+clean+energy+storage+and+charging+integrated+system+by+fusing+DE+algorithm+and+kernel+search+algorithm&rft.jtitle=Energy+Informatics&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=2520-8942&rft.volume=8&rft.issue=1&rft.spage=33&rft_id=info:doi/10.1186%2Fs42162-025-00494-9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8942&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8942&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8942&client=summon |