Optimal scheduling of clean energy storage and charging integrated system by fusing DE algorithm and kernel search algorithm

In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging systems has become increasingly prominent. This study proposes an optimal scheduling method that integrates Differential Evolution (DE) and Kerne...

Full description

Saved in:
Bibliographic Details
Published in:Energy Informatics Vol. 8; no. 1; pp. 33 - 21
Main Authors: Wang, Xinhua, Jia, Yujie, Su, Hao, Dang, Hua, Lu, Songfu
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.12.2025
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:2520-8942, 2520-8942
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging systems has become increasingly prominent. This study proposes an optimal scheduling method that integrates Differential Evolution (DE) and Kernel Search Optimization (KSO) algorithms. By incorporating DE’s mutation, crossover, and selection operations into the KSO framework, the method effectively avoids local optima while retaining KSO’s advantages in handling complex structures and large-scale data. Experimental results demonstrate that the convergence speed of the fusion algorithm is improved by 34.2%, 30.8%, 28.6%, and 23.4% over four other algorithms for hybrid functions, and by 56.7%, 52.9%, 25.3%, and 21.4% for combined functions. Additionally, the utilization of renewable energy increased from 40% to nearly 70% within 24 h. It can be seen that the convergence speed and renewable energy utilization of the fusion algorithm are significantly improved compared with the four baseline methods, highlighting its effectiveness in large-scale clean energy systems. This research provides an effective scheduling strategy for optimizing clean energy storage and charging systems. This study provides an effective scheduling strategy for optimizing clean energy storage and charging systems, and supports scalable and efficient energy management of urban and rural energy grids. The results show that the optimization of the integrated charging system can not only achieve optimal scheduling in a shorter time, but also reduce operating costs and resource waste, and effectively improve the overall operating efficiency of the energy system. Research to promote the efficient use of renewable energy will help reduce dependence on fossil fuels, thereby reducing greenhouse gas emissions and environmental pollution, which will have a positive impact on achieving the Sustainable Development goals and addressing climate change, and promote a win-win situation for the economy and the environment.
AbstractList Abstract In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging systems has become increasingly prominent. This study proposes an optimal scheduling method that integrates Differential Evolution (DE) and Kernel Search Optimization (KSO) algorithms. By incorporating DE’s mutation, crossover, and selection operations into the KSO framework, the method effectively avoids local optima while retaining KSO’s advantages in handling complex structures and large-scale data. Experimental results demonstrate that the convergence speed of the fusion algorithm is improved by 34.2%, 30.8%, 28.6%, and 23.4% over four other algorithms for hybrid functions, and by 56.7%, 52.9%, 25.3%, and 21.4% for combined functions. Additionally, the utilization of renewable energy increased from 40% to nearly 70% within 24 h. It can be seen that the convergence speed and renewable energy utilization of the fusion algorithm are significantly improved compared with the four baseline methods, highlighting its effectiveness in large-scale clean energy systems. This research provides an effective scheduling strategy for optimizing clean energy storage and charging systems. This study provides an effective scheduling strategy for optimizing clean energy storage and charging systems, and supports scalable and efficient energy management of urban and rural energy grids. The results show that the optimization of the integrated charging system can not only achieve optimal scheduling in a shorter time, but also reduce operating costs and resource waste, and effectively improve the overall operating efficiency of the energy system. Research to promote the efficient use of renewable energy will help reduce dependence on fossil fuels, thereby reducing greenhouse gas emissions and environmental pollution, which will have a positive impact on achieving the Sustainable Development goals and addressing climate change, and promote a win-win situation for the economy and the environment.
In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging systems has become increasingly prominent. This study proposes an optimal scheduling method that integrates Differential Evolution (DE) and Kernel Search Optimization (KSO) algorithms. By incorporating DE’s mutation, crossover, and selection operations into the KSO framework, the method effectively avoids local optima while retaining KSO’s advantages in handling complex structures and large-scale data. Experimental results demonstrate that the convergence speed of the fusion algorithm is improved by 34.2%, 30.8%, 28.6%, and 23.4% over four other algorithms for hybrid functions, and by 56.7%, 52.9%, 25.3%, and 21.4% for combined functions. Additionally, the utilization of renewable energy increased from 40% to nearly 70% within 24 h. It can be seen that the convergence speed and renewable energy utilization of the fusion algorithm are significantly improved compared with the four baseline methods, highlighting its effectiveness in large-scale clean energy systems. This research provides an effective scheduling strategy for optimizing clean energy storage and charging systems. This study provides an effective scheduling strategy for optimizing clean energy storage and charging systems, and supports scalable and efficient energy management of urban and rural energy grids. The results show that the optimization of the integrated charging system can not only achieve optimal scheduling in a shorter time, but also reduce operating costs and resource waste, and effectively improve the overall operating efficiency of the energy system. Research to promote the efficient use of renewable energy will help reduce dependence on fossil fuels, thereby reducing greenhouse gas emissions and environmental pollution, which will have a positive impact on achieving the Sustainable Development goals and addressing climate change, and promote a win-win situation for the economy and the environment.
In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging systems has become increasingly prominent. This study proposes an optimal scheduling method that integrates Differential Evolution (DE) and Kernel Search Optimization (KSO) algorithms. By incorporating DE’s mutation, crossover, and selection operations into the KSO framework, the method effectively avoids local optima while retaining KSO’s advantages in handling complex structures and large-scale data. Experimental results demonstrate that the convergence speed of the fusion algorithm is improved by 34.2%, 30.8%, 28.6%, and 23.4% over four other algorithms for hybrid functions, and by 56.7%, 52.9%, 25.3%, and 21.4% for combined functions. Additionally, the utilization of renewable energy increased from 40% to nearly 70% within 24 h. It can be seen that the convergence speed and renewable energy utilization of the fusion algorithm are significantly improved compared with the four baseline methods, highlighting its effectiveness in large-scale clean energy systems. This research provides an effective scheduling strategy for optimizing clean energy storage and charging systems. This study provides an effective scheduling strategy for optimizing clean energy storage and charging systems, and supports scalable and efficient energy management of urban and rural energy grids. The results show that the optimization of the integrated charging system can not only achieve optimal scheduling in a shorter time, but also reduce operating costs and resource waste, and effectively improve the overall operating efficiency of the energy system. Research to promote the efficient use of renewable energy will help reduce dependence on fossil fuels, thereby reducing greenhouse gas emissions and environmental pollution, which will have a positive impact on achieving the Sustainable Development goals and addressing climate change, and promote a win-win situation for the economy and the environment.
ArticleNumber 33
Author Lu, Songfu
Wang, Xinhua
Dang, Hua
Jia, Yujie
Su, Hao
Author_xml – sequence: 1
  givenname: Xinhua
  surname: Wang
  fullname: Wang, Xinhua
  organization: State Grid Xinxiang Electric Power Supply Company
– sequence: 2
  givenname: Yujie
  surname: Jia
  fullname: Jia, Yujie
  email: JYJ2024595@163.com
  organization: State Grid Xinxiang Electric Power Supply Company
– sequence: 3
  givenname: Hao
  surname: Su
  fullname: Su, Hao
  organization: State Grid Xinxiang Electric Power Supply Company
– sequence: 4
  givenname: Hua
  surname: Dang
  fullname: Dang, Hua
  organization: State Grid Xinxiang Electric Power Supply Company
– sequence: 5
  givenname: Songfu
  surname: Lu
  fullname: Lu, Songfu
  organization: State Grid Xinxiang Electric Power Supply Company
BookMark eNp9UUtvEzEQtlCRKKV_gJMlzgt-rWMfUSlQqVIvcLbG9uxmw8YO9uYQiR-Pk0WUE6cZzXyPGX2vyVXKCQl5y9l7zo3-UJXgWnRM9B1jyqrOviDXohesM1aJq3_6V-S21h1jTJhe91Zck19Ph2Xaw0xr2GI8zlMaaR5omBESxYRlPNG65AIjUkiRhi2U8Qya0oJjgQUjrae64J76Ex2O9bz7dE9hHnOZlu3-wvqBJWHzQChh-7x7Q14OMFe8_VNvyPfP99_uvnaPT18e7j4-dkFqYzsRPdd-o0xvuNQ-ovVmsNH4qKOFoDiA4qJnkm8gsKCBB2YG4QOg2iCgvCEPq27MsHOH0h4uJ5dhcpdBLqODskztaeeVESC9tFxFJY03hvVq4BFR9VqYoWm9W7UOJf88Yl3cLh9Laue75q80l0qIhhIrKpRca8Hhrytn7hyaW0NzLTR3Cc3ZRpIrqTZwGrE8S_-H9RvAn50A
Cites_doi 10.1016/j.joule.2023.02.005
10.1007/s42235-022-00207-y
10.1007/s10462-022-10328-9
10.1109/TII.2022.3145834
10.1007/s10479-021-04114-z
10.1007/s11356-023-27928-9
10.1007/s00366-021-01545-x
10.47852/bonviewAIA2202331
10.1146/annurev-resource-111920-022328
10.1007/s11042-021-11029-1
10.1016/j.aej.2023.09.066
10.1007/s10462-022-10199-0
10.1109/TCYB.2022.3175533
10.47852/bonviewAIA2202290
10.1007/s00366-021-01392-w
10.1108/EMJB-02-2022-0034
10.1016/j.isatra.2022.12.008
10.1002/for.2971
10.1049/cth2.12479
10.1007/s11356-022-23186-3
10.1007/s11831-023-09887-z
10.1109/TSTE.2022.3223684
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Dec 2025
DBID C6C
AAYXX
CITATION
7SC
8FD
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1186/s42162-025-00494-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2520-8942
EndPage 21
ExternalDocumentID oai_doaj_org_article_b482a3b3914d438b88054f1dee45628f
10_1186_s42162_025_00494_9
GroupedDBID 0R~
AAFWJ
AAJSJ
AAKKN
AASML
ABEEZ
ACACY
ACULB
ADBBV
ADMLS
AEUYN
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARCSS
BCNDV
BENPR
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
IAO
ISR
ITC
OK1
PHGZM
PHGZT
PIMPY
PROAC
SOJ
AAYXX
AFFHD
CITATION
7SC
8FD
ABUWG
AZQEC
DWQXO
JQ2
L7M
L~C
L~D
M~E
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3689-2db16b74858136bde9b8f9d8bd6d9ac41aa41250317ac0c6a1c08f2bcae47eae3
IEDL.DBID BENPR
ISSN 2520-8942
IngestDate Tue Oct 14 19:08:47 EDT 2025
Sat Oct 11 05:45:02 EDT 2025
Sat Nov 29 08:10:03 EST 2025
Mon Jul 21 06:08:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Storage and charging integration
Differential evolution algorithm
Kernel search
Clean energy
Optimal scheduling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3689-2db16b74858136bde9b8f9d8bd6d9ac41aa41250317ac0c6a1c08f2bcae47eae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3174613422?pq-origsite=%requestingapplication%
PQID 3174613422
PQPubID 4406324
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_b482a3b3914d438b88054f1dee45628f
proquest_journals_3174613422
crossref_primary_10_1186_s42162_025_00494_9
springer_journals_10_1186_s42162_025_00494_9
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Energy Informatics
PublicationTitleAbbrev Energy Inform
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References X Fu (494_CR6) 2022; 14
JS Pan (494_CR19) 2023; 56
K Udaichi (494_CR12) 2023; 17
L Tightiz (494_CR16) 2022; 137
L Tightiz (494_CR17) 2023; 82
W Wang (494_CR3) 2022; 53
G Mehdi (494_CR21) 2022; 1
SKK Saho (494_CR18) 2022; 19
B Xi (494_CR10) 2023; 30
J Pang (494_CR15) 2022; 18
CC Montañés (494_CR7) 2023; 7
A Mahmoodi (494_CR14) 2024; 119
H Zhang (494_CR4) 2023; 39
MA Awadallah (494_CR2) 2023; 30
A Williams (494_CR22) 2023; 1
M Cai (494_CR11) 2022; 38
S Ali (494_CR8) 2023; 30
Z Hajirahimi (494_CR1) 2023; 56
M Mahbobi (494_CR5) 2023; 330
R Kumar (494_CR13) 2022; 81
LS Bennear (494_CR9) 2022; 14
J Hao (494_CR20) 2023; 42
References_xml – volume: 7
  start-page: 437
  issue: 3
  year: 2023
  ident: 494_CR7
  publication-title: Joule
  doi: 10.1016/j.joule.2023.02.005
– volume: 19
  start-page: 1522
  issue: 5
  year: 2022
  ident: 494_CR18
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-022-00207-y
– volume: 56
  start-page: 6101
  issue: 7
  year: 2023
  ident: 494_CR19
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10328-9
– volume: 18
  start-page: 8786
  issue: 12
  year: 2022
  ident: 494_CR15
  publication-title: IEEE T Ind Inform
  doi: 10.1109/TII.2022.3145834
– volume: 330
  start-page: 609
  issue: 1
  year: 2023
  ident: 494_CR5
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-021-04114-z
– volume: 30
  start-page: 77668
  issue: 31
  year: 2023
  ident: 494_CR8
  publication-title: Environ Sci Pollut R
  doi: 10.1007/s11356-023-27928-9
– volume: 39
  start-page: 1735
  issue: 3
  year: 2023
  ident: 494_CR4
  publication-title: Eng Comput-Germany
  doi: 10.1007/s00366-021-01545-x
– volume: 1
  start-page: 118
  issue: 2
  year: 2023
  ident: 494_CR22
  publication-title: Artif Intel Appl
  doi: 10.47852/bonviewAIA2202331
– volume: 14
  start-page: 647
  issue: 1
  year: 2022
  ident: 494_CR9
  publication-title: Annu Rev Resour Econ
  doi: 10.1146/annurev-resource-111920-022328
– volume: 81
  start-page: 34595
  issue: 24
  year: 2022
  ident: 494_CR13
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11029-1
– volume: 82
  start-page: 145
  issue: 1
  year: 2023
  ident: 494_CR17
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2023.09.066
– volume: 56
  start-page: 1201
  issue: 2
  year: 2023
  ident: 494_CR1
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10199-0
– volume: 53
  start-page: 2685
  issue: 4
  year: 2022
  ident: 494_CR3
  publication-title: IEEE T Cybernetics
  doi: 10.1109/TCYB.2022.3175533
– volume: 1
  start-page: 3
  issue: 1
  year: 2022
  ident: 494_CR21
  publication-title: Artif Intel Appl
  doi: 10.47852/bonviewAIA2202290
– volume: 38
  start-page: 3611
  issue: 4
  year: 2022
  ident: 494_CR11
  publication-title: Eng Comput-Germany
  doi: 10.1007/s00366-021-01392-w
– volume: 119
  start-page: 1231
  issue: 4
  year: 2024
  ident: 494_CR14
  publication-title: Euromed J Bus
  doi: 10.1108/EMJB-02-2022-0034
– volume: 137
  start-page: 471
  issue: 1
  year: 2022
  ident: 494_CR16
  publication-title: ISA
  doi: 10.1016/j.isatra.2022.12.008
– volume: 42
  start-page: 1385
  issue: 6
  year: 2023
  ident: 494_CR20
  publication-title: J Forecasting
  doi: 10.1002/for.2971
– volume: 17
  start-page: 2292
  issue: 17
  year: 2023
  ident: 494_CR12
  publication-title: IET Control Theory A
  doi: 10.1049/cth2.12479
– volume: 30
  start-page: 14385
  issue: 6
  year: 2023
  ident: 494_CR10
  publication-title: Environ Sci Pollut R
  doi: 10.1007/s11356-022-23186-3
– volume: 30
  start-page: 2831
  issue: 5
  year: 2023
  ident: 494_CR2
  publication-title: Arch Comput Method E
  doi: 10.1007/s11831-023-09887-z
– volume: 14
  start-page: 642
  issue: 1
  year: 2022
  ident: 494_CR6
  publication-title: IEEE T Sustain Energ
  doi: 10.1109/TSTE.2022.3223684
SSID ssj0002856592
Score 2.3107927
Snippet In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and charging...
Abstract In the context of rapid developments in artificial intelligence and the clean energy industry, the optimal scheduling of clean energy storage and...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 33
SubjectTerms Algorithms
Artificial intelligence
Charging
Clean energy
Clean technology
Climate action
Climate change
Computer Science
Convergence
Differential evolution algorithm
Effectiveness
Electric power grids
Emissions
Emissions control
Energy industry
Energy management
Energy storage
Energy utilization
Evolutionary computation
Greenhouse gases
Information Systems and Communication Service
Kernel search
Operating costs
Optimal scheduling
Optimization
Renewable energy
Renewable resources
Scheduling
Search algorithms
Storage and charging integration
Sustainable development
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TxwxELYiRJEmApEoRyByQZesONuz3nEZAoiKpEgkOstPQgh76O5AQsqPZ-y94yUhGlrbq52d8bzW428Y22lTdtEZ3RhUqQHRqcZ4gGbcJSwODoP0tdlEd3yMJyfm54NWX6UmbIAHHhi36wGlU14ZAREUetpvLWQRUyqxO-ZifcedeZBM_a2_jNpyXri8JYN6dwZSaNmU7q0VE6UxjzxRBex_FGU-ORit_uZwjb1bBIr820DgOnuT-g32_wdp-AUNU05KPqJcJeeTzGmB63mq1_h4KXckI8FdH3nFQSqL7lAhIh-wm7m_4bkUvZ_y_QPu_p1OpmfzPxf1qfM07RO9oyrB_dx79vvw4Nf3o2bRP6EJSpfipeiF9h1gi0JpH5PxmE1EH3U0LoBwDii-IbXuXBgH7UQYY5Y-uARdckl9YCv9pE8fGQfXOUq9JAUwCDmi8WTpVBtQkBw85BH7suSlvRxgMmxNL1DbgfOWOG8r560Zsb3C7ruVBeK6DpDg7ULw9iXBj9jWUlh2oXczS58CFKCAlCP2dSnA--nnSdp8DZI-sbeybLBa7bLFVubTq7TNVsP1_Gw2_Vx36C2BYuib
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxUxEG8UPXjhw4_4BE0P3nTjazvbnR4RIZ6AAybcmn7tE5V9ZN-DhIQ_3mnfLgSjB7xup2m30_loO_Mbxt7XqXXRGV0ZVKkC0ajKeIBq2iTMBg6D9KXYRHN4iKen5nhICluM0e7jk2TR1EWsUX9agBRaVrn8agE1qcxj9qQWaHIg396Q4_CjXBfV-a1wzJD5a9d7VqiA9d_zMP94FC225mDj_2a5ydYH35LvrjbDFnuUuudsY6zbwAcxfsFujkhPnBMlnWzJ0uSEdD5vOfVxHU8lGZDnoElSNdx1kRc0pUx0iy0R-QoBmvtr3ubQ-Rn_ss_dr9m8P1t-Py-9fqa-SzRGEaW7tpfs28H-yd7XaqjCUAWlcwhU9EL7BrBGobSPyXhsTUQfdTQugHAOyEsi5dC4MA3aiTDFVvrgEjTJJfWKrXXzLr1mHFzj6AAnyQ1CaCMaT_pS1QFFSuChnbAPI1fsxQpsw5ZDCmq7WlhLC2vLwlozYZ8z424pM1B2-TDvZ3aQO-sBpVNeGQERFHpSVzW0ItKA5PkhDbkzst0O0ruw9CtAbg5IOWEfRzbfNf97Sm8eRr7Nnsm8U0p0zA5bW_aX6S17Gq6WZ4v-XdnVvwHdfvMS
  priority: 102
  providerName: Springer Nature
Title Optimal scheduling of clean energy storage and charging integrated system by fusing DE algorithm and kernel search algorithm
URI https://link.springer.com/article/10.1186/s42162-025-00494-9
https://www.proquest.com/docview/3174613422
https://doaj.org/article/b482a3b3914d438b88054f1dee45628f
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: BENPR
  dateStart: 20181001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: PIMPY
  dateStart: 20181001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2520-8942
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002856592
  issn: 2520-8942
  databaseCode: C24
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoy4ELDwEitI184AZWY3vWa58q2qaCAyFCIJWT5dcGBN20SUCqxI9n7OwmKhJcuNretaVvPDMej78h5EWVGhedUcxomRjwWjLjAdioTjobOB2EL8Um6slEX1yYaRdwW3Zplb1OLIo6zkOOkR-hnQM0PSDE8dU1y1Wj8u1qV0Jjh-xlpjKU872T8WT6YRNlEbrK94b9axmtjpYguBIsV3Et3CjM3LJIhbj_lrf5xwVpsTvnD_53xQ_J_c7jpK_XIvKI3EntY_LrPaqKS2zGwy0am_wmnc4bigNcS1N5D0hz3iRqG-raSAuhUh60oZeIdE0CTf0NbXL2_Iyejan7PsMlrL5clq--pUWbcI6ym7Z9T8in8_HH0zesK8TAglQ5Cyp6rnwNutJcKh-T8boxUfuoonEBuHOAjhLqh9qFUVCOh5FuhA8uQZ1ckk_Jbjtv0zNCwdUOz3ACPSENTdTGo8qUVdA8JfDQDMjLHgx7tebbsOWcopVdQ2cROlugs2ZATjJem5GZK7s0zBcz220960ELJ700HCJI7VFjVdDwiBOi86dxyoMeP9tt4KXdgjcgr3oJ2Hb_fUnP__23fXJPZNkrCTEHZHe1-JEOyd3wc_V1uRh24jskO6cChiU-gG3Tt--mn38D3ZL76g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceAhQtxTwAU4QdeNMEvuAENBWXbVd9lCkcjJ-ZUG02bK7gCrxm_iNjJ1kV0WCWw9cY8eO48_zeex5ADzNfaWdlkUiReYTTMsskQYxGZReBIITlpuYbKIcjcTJiRyvwa_OFyaYVXYyMQpqN7XhjHybeA6JepDzV-dfk5A1Ktyudik0Glgc-IsfpLLNXw53aH6fcb63e_x2P2mzCiQ2K4JJjzNpYUoUuUizwjgvjaikE8YVTmqLqdZIrE9gL7Ud2EKndiAqbqz2WHrtM2r3GqxjAHsP1sfDo_GH5akOF3m4p-y8c0SxPUeeFjwJWWNjLJZEXmLAmCjg0u72jwvZyHN7t_-3P3QHbrU7ava6WQJ3Yc3X9-DnOxKFZ_SYlHci0-Bzz6YVowq6Zj76O7JgF0rSlOnasRgwKlRahs9wrAlyzcwFq4J3wITt7DJ9OqEhLz6dxbe--FntqY846FXZfXh_JQN-AL16WvsNYKhLTToqp52ewMoJaYgSstyK1Hs0WPXheTf56ryJJ6KiHiYK1UBFEVRUhIqSfXgT8LGsGWKBxwfT2US1okUZFFxnJpMpOsyEIYmcY5U66pA2t4K63OrwoloBNVcrsPThRYe4VfHfP2nz3609gRv7x0eH6nA4OngIN3nAfTT-2YLeYvbNP4Lr9vvi83z2uF06DD5eNRZ_A8kdV0w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMSl5Sm2FPCBG0Rd2xPHPkLbFQi09ABSb5afS4Fmq-yChNQf37GTtBTBAXGNx3Jiz8uZmW8IeV7HZIPVstJKxApYIyrtAKppE1U2cMpzV5pNNPO5OjrSh79U8Zds9zEk2dc0ZJSmdr17GlIv4kruroAzyavcirUAnFT6OrmRI1KZx_eGeocv5ddRneOGY7XMH6desUgFuP-Kt_lbgLTYndnW_7_xHbI5-Jz0Vc8kd8m12N4jW2M_BzqI931y9gH1xwlS4o0XLVAuVKfLRHGObWksRYI0J1OiCqK2DbSgLGWiC8yJQHtkaOp-0pRT6hd0_4Dab4tld7z-fFJmfY1dG3GNImKXYw_Ip9nBx7031dCdofJC5tSo4Jh0DahaMSFdiNqppINyQQZtPTBrAb0nVBqN9VMvLfNTlbjzNkITbRQPyUa7bOMjQsE2Fi92HN0jBSko7VCPitorFiM4SBPyYjwhc9qDcJhyeVHS9BtrcGNN2VijJ-R1PsQLygygXR4su4UZ5NE4UNwKJzSDAEI5VGM1JBZwQfQIFS65M7KAGaR6ZfBTAN0f4HxCXo5Hfjn891fa_jfyZ-TW4f7MvH87f_eY3OaZaUoCzQ7ZWHff4xNy0_9YH6-6p4XZzwHL3P7b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+scheduling+of+clean+energy+storage+and+charging+integrated+system+by+fusing+DE+algorithm+and+kernel+search+algorithm&rft.jtitle=Energy+Informatics&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.eissn=2520-8942&rft.volume=8&rft.issue=1&rft.spage=33&rft_id=info:doi/10.1186%2Fs42162-025-00494-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8942&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8942&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8942&client=summon