A coefficient of determination (R2) for generalized linear mixed models

Extensions of linear models are very commonly used in the analysis of biological data. Whereas goodness of fit measures such as the coefficient of determination (R2) or the adjusted R2 are well established for linear models, it is not obvious how such measures should be defined for generalized linea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biometrical journal Ročník 61; číslo 4; s. 860 - 872
Hlavní autor: Piepho, Hans‐Peter
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley - VCH Verlag GmbH & Co. KGaA 01.07.2019
Témata:
ISSN:0323-3847, 1521-4036, 1521-4036
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Extensions of linear models are very commonly used in the analysis of biological data. Whereas goodness of fit measures such as the coefficient of determination (R2) or the adjusted R2 are well established for linear models, it is not obvious how such measures should be defined for generalized linear and mixed models. There are by now several proposals but no consensus has yet emerged as to the best unified approach in these settings. In particular, it is an open question how to best account for heteroscedasticity and for covariance among observations present in residual error or induced by random effects. This paper proposes a new approach that addresses this issue and is universally applicable for arbitrary variance‐covariance structures including spatial models and repeated measures. It is exemplified using three biological examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0323-3847
1521-4036
1521-4036
DOI:10.1002/bimj.201800270