Compressing dynamic meshes with geometric laplacians

This paper addresses the problem of representing dynamic 3D meshes in a compact way, so that they can be stored and transmitted efficiently. We focus on sequences of triangle meshes with shared connectivity, avoiding the necessity of having a skinning structure. Our method first computes an average...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 33; číslo 2; s. 145 - 154
Hlavní autori: Váša, L., Marras, S., Hormann, K., Brunnett, G.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.05.2014
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper addresses the problem of representing dynamic 3D meshes in a compact way, so that they can be stored and transmitted efficiently. We focus on sequences of triangle meshes with shared connectivity, avoiding the necessity of having a skinning structure. Our method first computes an average mesh of the whole sequence in edge shape space. A discrete geometric Laplacian of this average surface is then used to encode the coefficients that describe the trajectories of the mesh vertices. Optionally, a novel spatio‐temporal predictor may be applied to the trajectories to further improve the compression rate. We demonstrate that our approach outperforms the current state of the art in terms of low data rate at a given perceived distortion, as measured by the STED and KG error metrics.
Bibliografia:istex:89BA65035939913AE27973DAEDB417592F05B59B
ArticleID:CGF12304
ark:/67375/WNG-DBBGKZ62-P
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12304