Statics Aware Grid Shells

We introduce a framework for the generation of polygonal gridshell architectural structures, whose topology is designed in order to excel in static performances. We start from the analysis of stress on the input surface and we use the resulting tensor field to induce an anisotropic nonEuclidean me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 34; H. 2; S. 627 - 641
Hauptverfasser: Pietroni, Nico, Tonelli, Davide, Puppo, Enrico, Froli, Maurizio, Scopigno, Roberto, Cignoni, Paolo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.05.2015
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a framework for the generation of polygonal gridshell architectural structures, whose topology is designed in order to excel in static performances. We start from the analysis of stress on the input surface and we use the resulting tensor field to induce an anisotropic nonEuclidean metric over it. This metric is derived by studying the relation between the stress tensor over a continuous shell and the optimal shape of polygons in a corresponding gridshell. Polygonal meshes with uniform density and isotropic cells under this metric exhibit variable density and anisotropy in Euclidean space, thus achieving a better distribution of the strain energy over their elements. Meshes are further optimized taking into account symmetry and regularity of cells to improve aesthetics. We experiment with quad meshes and hexdominant meshes, demonstrating that our gridshells achieve better static performances than stateoftheart gridshells.
Bibliographie:istex:C06AB6757162E25C1DB5C4171123C38277F84673
ark:/67375/WNG-33K9DFZ2-3
ArticleID:CGF12590
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12590