Dynamic predictions with time‐dependent covariates in survival analysis using joint modeling and landmarking

A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests and biomarkers to aid them in optimizing medical care. These tests are often performed on a regular basis in order to closely follow the progre...

Full description

Saved in:
Bibliographic Details
Published in:Biometrical journal Vol. 59; no. 6; pp. 1261 - 1276
Main Authors: Rizopoulos, Dimitris, Molenberghs, Geert, Lesaffre, Emmanuel M.E.H.
Format: Journal Article
Language:English
Published: Germany Wiley - VCH Verlag GmbH & Co. KGaA 01.11.2017
Subjects:
ISSN:0323-3847, 1521-4036, 1521-4036
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests and biomarkers to aid them in optimizing medical care. These tests are often performed on a regular basis in order to closely follow the progression of the disease. In this setting, it is of interest to optimally utilize the recorded information and provide medically relevant summary measures, such as survival probabilities, which will aid in decision making. In this work, we present and compare two statistical techniques that provide dynamically updated estimates of survival probabilities, namely landmark analysis and joint models for longitudinal and time‐to‐event data. Special attention is given to the functional form linking the longitudinal and event time processes, and to measures of discrimination and calibration in the context of dynamic prediction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0323-3847
1521-4036
1521-4036
DOI:10.1002/bimj.201600238